/*
 
* Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
 
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 
*
 
* This code is free software; you can redistribute it and/or modify it
 
* under the terms of the GNU General Public License version 2 only, as
 
* published by the Free Software Foundation.
  
Oracle designates this
 
* particular file as subject to the "Classpath" exception as provided
 
* by Oracle in the LICENSE file that accompanied this code.
 
*
 
* This code is distributed in the hope that it will be useful, but WITHOUT
 
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 
* FITNESS FOR A PARTICULAR PURPOSE.
  
See the GNU General Public License
 
* version 2 for more details (a copy is included in the LICENSE file that
 
* accompanied this code).
 
*
 
* You should have received a copy of the GNU General Public License version
 
* 2 along with this work; if not, write to the Free Software Foundation,
 
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 
*
 
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 
* or visit www.oracle.com if you need additional information or have any
 
* questions.
 
*/

package java.lang;

import sun.misc.FloatingDecimal;
import sun.misc.FloatConsts;
import sun.misc.DoubleConsts;

/**
 
* The {@code Float} class wraps a value of primitive type
 
* {@code float} in an object. An object of type
 
* {@code Float} contains a single field whose type is
 
* {@code float}.
 
*
 
* <p>In addition, this class provides several methods for converting a
 
* {@code float} to a {@code String} and a
 
* {@code String} to a {@code float}, as well as other
 
* constants and methods useful when dealing with a
 
* {@code float}.
 
*
 
* @author
  
Lee Boynton
 
* @author
  
Arthur van Hoff
 
* @author
  
Joseph D. Darcy
 
* @since JDK1.0
 
*/

public final class Float extends Number implements Comparable<Float> {
    
/**
     
* A constant holding the positive infinity of type
     
* {@code float}. It is equal to the value returned by
     
* {@code Float.intBitsToFloat(0x7f800000)}.
     
*/

    
public static final float POSITIVE_INFINITY = 1.0f / 0.0f;

    
/**
     
* A constant holding the negative infinity of type
     
* {@code float}. It is equal to the value returned by
     
* {@code Float.intBitsToFloat(0xff800000)}.
     
*/

    
public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;

    
/**
     
* A constant holding a Not-a-Number (NaN) value of type
     
* {@code float}.
  
It is equivalent to the value returned by
     
* {@code Float.intBitsToFloat(0x7fc00000)}.
     
*/

    
public static final float NaN = 0.0f / 0.0f;

    
/**
     
* A constant holding the largest positive finite value of type
     
* {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
     
* It is equal to the hexadecimal floating-point literal
     
* {@code 0x1.fffffeP+127f} and also equal to
     
* {@code Float.intBitsToFloat(0x7f7fffff)}.
     
*/

    
public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f

    
/**
     
* A constant holding the smallest positive normal value of type
     
* {@code float}, 2<sup>-126</sup>.
  
It is equal to the
     
* hexadecimal floating-point literal {@code 0x1.0p-126f} and also
     
* equal to {@code Float.intBitsToFloat(0x00800000)}.
     
*
     
* @since 1.6
     
*/

    
public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f

    
/**
     
* A constant holding the smallest positive nonzero value of type
     
* {@code float}, 2<sup>-149</sup>. It is equal to the
     
* hexadecimal floating-point literal {@code 0x0.000002P-126f}
     
* and also equal to {@code Float.intBitsToFloat(0x1)}.
     
*/

    
public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f

    
/**
     
* Maximum exponent a finite {@code float} variable may have.
  
It
     
* is equal to the value returned by {@code
     
* Math.getExponent(Float.MAX_VALUE)}.
     
*
     
* @since 1.6
     
*/

    
public static final int MAX_EXPONENT = 127;

    
/**
     
* Minimum exponent a normalized {@code float} variable may have.
     
* It is equal to the value returned by {@code
     
* Math.getExponent(Float.MIN_NORMAL)}.
     
*
     
* @since 1.6
     
*/

    
public static final int MIN_EXPONENT = -126;

    
/**
     
* The number of bits used to represent a {@code float} value.
     
*
     
* @since 1.5
     
*/

    
public static final int SIZE = 32;

    
/**
     
* The number of bytes used to represent a {@code float} value.
     
*
     
* @since 1.8
     
*/

    
public static final int BYTES = SIZE / Byte.SIZE;

    
/**
     
* The {@code Class} instance representing the primitive type
     
* {@code float}.
     
*
     
* @since JDK1.1
     
*/

    
@SuppressWarnings("unchecked")
    
public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");

    
/**
     
* Returns a string representation of the {@code float}
     
* argument. All characters mentioned below are ASCII characters.
     
* <ul>
     
* <li>If the argument is NaN, the result is the string
     
* "{@code NaN}".
     
* <li>Otherwise, the result is a string that represents the sign and
     
*magnitude (absolute value) of the argument. If the sign is
     
*negative, the first character of the result is
     
*'{@code -}' ({@code '\u005Cu002D'}); if the sign is
     
*positive, no sign character appears in the result. As for
     
*the magnitude <i>m</i>:
     
* <ul>
     
* <li>If <i>m</i> is infinity, it is represented by the characters
     
*{@code "Infinity"}; thus, positive infinity produces
     
*the result {@code "Infinity"} and negative infinity
     
*produces the result {@code "-Infinity"}.
     
* <li>If <i>m</i> is zero, it is represented by the characters
     
*{@code "0.0"}; thus, negative zero produces the result
     
*{@code "-0.0"} and positive zero produces the result
     
*{@code "0.0"}.
     
* <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
     
*
      
less than 10<sup>7</sup>, then it is represented as the
     
*
      
integer part of <i>m</i>, in decimal form with no leading
     
*
      
zeroes, followed by '{@code .}'
     
*
      
({@code '\u005Cu002E'}), followed by one or more
     
*
      
decimal digits representing the fractional part of
     
*
      
<i>m</i>.
     
* <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
     
*
      
equal to 10<sup>7</sup>, then it is represented in
     
*
      
so-called "computerized scientific notation." Let <i>n</i>
     
*
      
be the unique integer such that 10<sup><i>n</i> </sup>&le;
     
*
      
<i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
     
*
      
be the mathematically exact quotient of <i>m</i> and
     
*
      
10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
     
*
      
The magnitude is then represented as the integer part of
     
*
      
<i>a</i>, as a single decimal digit, followed by
     
*
      
'{@code .}' ({@code '\u005Cu002E'}), followed by
     
*
      
decimal digits representing the fractional part of
     
*
      
<i>a</i>, followed by the letter '{@code E}'
     
*
      
({@code '\u005Cu0045'}), followed by a representation
     
*
      
of <i>n</i> as a decimal integer, as produced by the
     
*
      
method {@link java.lang.Integer#toString(int)}.
     
*
     
* </ul>
     
* </ul>
     
* How many digits must be printed for the fractional part of
     
* <i>m</i> or <i>a</i>? There must be at least one digit
     
* to represent the fractional part, and beyond that as many, but
     
* only as many, more digits as are needed to uniquely distinguish
     
* the argument value from adjacent values of type
     
* {@code float}. That is, suppose that <i>x</i> is the
     
* exact mathematical value represented by the decimal
     
* representation produced by this method for a finite nonzero
     
* argument <i>f</i>. Then <i>f</i> must be the {@code float}
     
* value nearest to <i>x</i>; or, if two {@code float} values are
     
* equally close to <i>x</i>, then <i>f</i> must be one of
     
* them and the least significant bit of the significand of
     
* <i>f</i> must be {@code 0}.
     
*
     
* <p>To create localized string representations of a floating-point
     
* value, use subclasses of
 
.
     
*
     
* @param
   
fthe float to be converted.
     
* @return a string representation of the argument.
     
*/

    
public static String toString(float f) {
        
return FloatingDecimal.toJavaFormatString(f);
    
}

    
/**
     
* Returns a hexadecimal string representation of the
     
* {@code float} argument. All characters mentioned below are
     
* ASCII characters.
     
*
     
* <ul>
     
* <li>If the argument is NaN, the result is the string
     
*"{@code NaN}".
     
* <li>Otherwise, the result is a string that represents the sign and
     
* magnitude (absolute value) of the argument. If the sign is negative,
     
* the first character of the result is '{@code -}'
     
* ({@code '\u005Cu002D'}); if the sign is positive, no sign character
     
* appears in the result. As for the magnitude <i>m</i>:
     
*
     
* <ul>
     
* <li>If <i>m</i> is infinity, it is represented by the string
     
* {@code "Infinity"}; thus, positive infinity produces the
     
* result {@code "Infinity"} and negative infinity produces
     
* the result {@code "-Infinity"}.
     
*
     
* <li>If <i>m</i> is zero, it is represented by the string
     
* {@code "0x0.0p0"}; thus, negative zero produces the result
     
* {@code "-0x0.0p0"} and positive zero produces the result
     
* {@code "0x0.0p0"}.
     
*
     
* <li>If <i>m</i> is a {@code float} value with a
     
* normalized representation, substrings are used to represent the
     
* significand and exponent fields.
  
The significand is
     
* represented by the characters {@code "0x1."}
     
* followed by a lowercase hexadecimal representation of the rest
     
* of the significand as a fraction.
  
Trailing zeros in the
     
* hexadecimal representation are removed unless all the digits
     
* are zero, in which case a single zero is used. Next, the
     
* exponent is represented by {@code "p"} followed
     
* by a decimal string of the unbiased exponent as if produced by
     
* a call to {@link Integer#toString(int) Integer.toString} on the
     
* exponent value.
     
*
     
* <li>If <i>m</i> is a {@code float} value with a subnormal
     
* representation, the significand is represented by the
     
* characters {@code "0x0."} followed by a
     
* hexadecimal representation of the rest of the significand as a
     
* fraction.
  
Trailing zeros in the hexadecimal representation are
     
* removed. Next, the exponent is represented by
     
* {@code "p-126"}.
  
Note that there must be at
     
* least one nonzero digit in a subnormal significand.
     
*
     
* </ul>
     
*
     
* </ul>
     
*
     
* <table border>
     
* <caption>Examples</caption>
     
* <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
     
* <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
     
* <tr><td>{@code -1.0}</td>
        
<td>{@code -0x1.0p0}</td>
     
* <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
     
* <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
     
* <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
     
* <tr><td>{@code 0.25}</td>
        
<td>{@code 0x1.0p-2}</td>
     
* <tr><td>{@code Float.MAX_VALUE}</td>
     
*<td>{@code 0x1.fffffep127}</td>
     
* <tr><td>{@code Minimum Normal Value}</td>
     
*<td>{@code 0x1.0p-126}</td>
     
* <tr><td>{@code Maximum Subnormal Value}</td>
     
*<td>{@code 0x0.fffffep-126}</td>
     
* <tr><td>{@code Float.MIN_VALUE}</td>
     
*<td>{@code 0x0.000002p-126}</td>
     
* </table>
     
* @param
   
fthe {@code float} to be converted.
     
* @return a hex string representation of the argument.
     
* @since 1.5
     
* @author Joseph D. Darcy
     
*/

    
public static String toHexString(float f) {
        
if (Math.abs(f) < FloatConsts.MIN_NORMAL
            
&&
  
f != 0.0f ) {// float subnormal
            
// Adjust exponent to create subnormal double, then
            
// replace subnormal double exponent with subnormal float
            
// exponent
            
String s = Double.toHexString(Math.scalb((double)f,
                                                     
/* -1022+126 */
                                                     
DoubleConsts.MIN_EXPONENT-
                                                     
FloatConsts.MIN_EXPONENT));
            
return s.replaceFirst("p-1022$", "p-126");
        
}
        
else // double string will be the same as float string
            
return Double.toHexString(f);
    
}

    
/**
     
* Returns a {@code Float} object holding the
     
* {@code float} value represented by the argument string
     
* {@code s}.
     
*
     
* <p>If {@code s} is {@code null}, then a
     
* {@code NullPointerException} is thrown.
     
*
     
* <p>Leading and trailing whitespace characters in {@code s}
     
* are ignored.
  
Whitespace is removed as if by the {@link
     
* String#trim} method; that is, both ASCII space and control
     
* characters are removed. The rest of {@code s} should
     
* constitute a <i>FloatValue</i> as described by the lexical
     
* syntax rules:
     
*
     
* <blockquote>
     
* <dl>
     
* <dt><i>FloatValue:</i>
     
* <dd><i>Sign<sub>opt</sub></i> {@code NaN}
     
* <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
     
* <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
     
* <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
     
* <dd><i>SignedInteger</i>
     
* </dl>
     
*
     
* <dl>
     
* <dt><i>HexFloatingPointLiteral</i>:
     
* <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
     
* </dl>
     
*
     
* <dl>
     
* <dt><i>HexSignificand:</i>
     
* <dd><i>HexNumeral</i>
     
* <dd><i>HexNumeral</i> {@code .}
     
* <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
     
*</i>{@code .}<i> HexDigits</i>
     
* <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
     
*</i>{@code .} <i>HexDigits</i>
     
* </dl>
     
*
     
* <dl>
     
* <dt><i>BinaryExponent:</i>
     
* <dd><i>BinaryExponentIndicator SignedInteger</i>
     
* </dl>
     
*
     
* <dl>
     
* <dt><i>BinaryExponentIndicator:</i>
     
* <dd>{@code p}
     
* <dd>{@code P}
     
* </dl>
     
*
     
* </blockquote>
     
*
     
* where <i>Sign</i>, <i>FloatingPointLiteral</i>,
     
* <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
     
* <i>FloatTypeSuffix</i> are as defined in the lexical structure
     
* sections of
     
* <cite>The Java&trade; Language Specification</cite>,
     
* except that underscores are not accepted between digits.
     
* If {@code s} does not have the form of
     
* a <i>FloatValue</i>, then a {@code NumberFormatException}
     
* is thrown. Otherwise, {@code s} is regarded as
     
* representing an exact decimal value in the usual
     
* "computerized scientific notation" or as an exact
     
* hexadecimal value; this exact numerical value is then
     
* conceptually converted to an "infinitely precise"
     
* binary value that is then rounded to type {@code float}
     
* by the usual round-to-nearest rule of IEEE 754 floating-point
     
* arithmetic, which includes preserving the sign of a zero
     
* value.
     
*
     
* Note that the round-to-nearest rule also implies overflow and
     
* underflow behaviour; if the exact value of {@code s} is large
     
* enough in magnitude (greater than or equal to ({@link
     
* #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
     
* rounding to {@code float} will result in an infinity and if the
     
* exact value of {@code s} is small enough in magnitude (less
     
* than or equal to
 
/2), rounding to float will
     
* result in a zero.
     
*
     
* Finally, after rounding a {@code Float} object representing
     
* this {@code float} value is returned.
     
*
     
* <p>To interpret localized string representations of a
     
* floating-point value, use subclasses of {@link
     
* java.text.NumberFormat}.
     
*
     
* <p>Note that trailing format specifiers, specifiers that
     
* determine the type of a floating-point literal
     
* ({@code 1.0f} is a {@code float} value;
     
* {@code 1.0d} is a {@code double} value), do
     
* <em>not</em> influence the results of this method.
  
In other
     
* words, the numerical value of the input string is converted
     
* directly to the target floating-point type.
  
In general, the
     
* two-step sequence of conversions, string to {@code double}
     
* followed by {@code double} to {@code float}, is
     
* <em>not</em> equivalent to converting a string directly to
     
* {@code float}.
  
For example, if first converted to an
     
* intermediate {@code double} and then to
     
* {@code float}, the string<br>
     
* {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
     
* results in the {@code float} value
     
* {@code 1.0000002f}; if the string is converted directly to
     
* {@code float}, <code>1.000000<b>1</b>f</code> results.
     
*
     
* <p>To avoid calling this method on an invalid string and having
     
* a {@code NumberFormatException} be thrown, the documentation
     
* for {@link Double#valueOf Double.valueOf} lists a regular
     
* expression which can be used to screen the input.
     
*
     
* @param
   
sthe string to be parsed.
     
* @return
  
a {@code Float} object holding the value
     
*
          
represented by the {@code String} argument.
     
* @throws
  
NumberFormatExceptionif the string does not contain a
     
*
          
parsable number.
     
*/

    
public static Float valueOf(String s) throws NumberFormatException {
        
return new Float(parseFloat(s));
    
}

    
/**
     
* Returns a {@code Float} instance representing the specified
     
* {@code float} value.
     
* If a new {@code Float} instance is not required, this method
     
* should generally be used in preference to the constructor
     
* {@link #Float(float)}, as this method is likely to yield
     
* significantly better space and time performance by caching
     
* frequently requested values.
     
*
     
* @param
  
f a float value.
     
* @return a {@code Float} instance representing {@code f}.
     
* @since
  
1.5
     
*/

    
public static Float valueOf(float f) {
        
return new Float(f);
    
}

    
/**
     
* Returns a new {@code float} initialized to the value
     
* represented by the specified {@code String}, as performed
     
* by the {@code valueOf} method of class {@code Float}.
     
*
     
* @param
  
s the string to be parsed.
     
* @return the {@code float} value represented by the string
     
*
         
argument.
     
* @throws NullPointerException
  
if the string is null
     
* @throws NumberFormatException if the string does not contain a
     
*
               
parsable {@code float}.
     
* @see
    
java.lang.Float#valueOf(String)
     
* @since 1.2
     
*/

    
public static float parseFloat(String s) throws NumberFormatException {
        
return FloatingDecimal.parseFloat(s);
    
}

    
/**
     
* Returns {@code true} if the specified number is a
     
* Not-a-Number (NaN) value, {@code false} otherwise.
     
*
     
* @param
   
vthe value to be tested.
     
* @return
  
{@code true} if the argument is NaN;
     
*
          
{@code false} otherwise.
     
*/

    
public static boolean isNaN(float v) {
        
return (v != v);
    
}

    
/**
     
* Returns {@code true} if the specified number is infinitely
     
* large in magnitude, {@code false} otherwise.
     
*
     
* @param
   
vthe value to be tested.
     
* @return
  
{@code true} if the argument is positive infinity or
     
*
          
negative infinity; {@code false} otherwise.
     
*/

    
public static boolean isInfinite(float v) {
        
return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
    
}


    
/**
     
* Returns {@code true} if the argument is a finite floating-point
     
* value; returns {@code false} otherwise (for NaN and infinity
     
* arguments).
     
*
     
* @param f the {@code float} value to be tested
     
* @return {@code true} if the argument is a finite
     
* floating-point value, {@code false} otherwise.
     
* @since 1.8
     
*/

     
public static boolean isFinite(float f) {
        
return Math.abs(f) <= FloatConsts.MAX_VALUE;
    
}

    
/**
     
* The value of the Float.
     
*
     
* @serial
     
*/
    
private final float value;

    
/**
     
* Constructs a newly allocated {@code Float} object that
     
* represents the primitive {@code float} argument.
     
*
     
* @param
   
valuethe value to be represented by the {@code Float}.
     
*/

    
public Float(float value) {
        
this.value = value;
    
}

    
/**
     
* Constructs a newly allocated {@code Float} object that
     
* represents the argument converted to type {@code float}.
     
*
     
* @param
   
valuethe value to be represented by the {@code Float}.
     
*/

    
public Float(double value) {
        
this.value = (float)value;
    
}

    
/**
     
* Constructs a newly allocated {@code Float} object that
     
* represents the floating-point value of type {@code float}
     
* represented by the string. The string is converted to a
     
* {@code float} value as if by the {@code valueOf} method.
     
*
     
* @param
      
s
   
a string to be converted to a {@code Float}.
     
* @throws
  
NumberFormatExceptionif the string does not contain a
     
*
               
parsable number.
     
* @see
        
java.lang.Float#valueOf(java.lang.String)
     
*/

    
public Float(String s) throws NumberFormatException {
        
value = parseFloat(s);
    
}

    
/**
     
* Returns {@code true} if this {@code Float} value is a
     
* Not-a-Number (NaN), {@code false} otherwise.
     
*
     
* @return
  
{@code true} if the value represented by this object is
     
*
          
NaN; {@code false} otherwise.
     
*/

    
public boolean isNaN() {
        
return isNaN(value);
    
}

    
/**
     
* Returns {@code true} if this {@code Float} value is
     
* infinitely large in magnitude, {@code false} otherwise.
     
*
     
* @return
  
{@code true} if the value represented by this object is
     
*
          
positive infinity or negative infinity;
     
*
          
{@code false} otherwise.
     
*/

    
public boolean isInfinite() {
        
return isInfinite(value);
    
}

    
/**
     
* Returns a string representation of this {@code Float} object.
     
* The primitive {@code float} value represented by this object
     
* is converted to a {@code String} exactly as if by the method
     
* {@code toString} of one argument.
     
*
     
* @return
  
a {@code String} representation of this object.
     
* @see java.lang.Float#toString(float)
     
*/

    
public String toString() {
        
return Float.toString(value);
    
}

    
/**
     
* Returns the value of this {@code Float} as a {@code byte} after
     
* a narrowing primitive conversion.
     
*
     
* @return
  
the {@code float} value represented by this object
     
*
          
converted to type {@code byte}
     
* @jls 5.1.3 Narrowing Primitive Conversions
     
*/

    
public byte byteValue() {
        
return (byte)value;
    
}

    
/**
     
* Returns the value of this {@code Float} as a {@code short}
     
* after a narrowing primitive conversion.
     
*
     
* @return
  
the {@code float} value represented by this object
     
*
          
converted to type {@code short}
     
* @jls 5.1.3 Narrowing Primitive Conversions
     
* @since JDK1.1
     
*/

    
public short shortValue() {
        
return (short)value;
    
}

    
/**
     
* Returns the value of this {@code Float} as an {@code int} after
     
* a narrowing primitive conversion.
     
*
     
* @return
  
the {@code float} value represented by this object
     
*
          
converted to type {@code int}
     
* @jls 5.1.3 Narrowing Primitive Conversions
     
*/

    
public int intValue() {
        
return (int)value;
    
}

    
/**
     
* Returns value of this {@code Float} as a {@code long} after a
     
* narrowing primitive conversion.
     
*
     
* @return
  
the {@code float} value represented by this object
     
*
          
converted to type {@code long}
     
* @jls 5.1.3 Narrowing Primitive Conversions
     
*/

    
public long longValue() {
        
return (long)value;
    
}

    
/**
     
* Returns the {@code float} value of this {@code Float} object.
     
*
     
* @return the {@code float} value represented by this object
     
*/

    
public float floatValue() {
        
return value;
    
}

    
/**
     
* Returns the value of this {@code Float} as a {@code double}
     
* after a widening primitive conversion.
     
*
     
* @return the {@code float} value represented by this
     
*
         
object converted to type {@code double}
     
* @jls 5.1.2 Widening Primitive Conversions
     
*/

    
public double doubleValue() {
        
return (double)value;
    
}

    
/**
     
* Returns a hash code for this {@code Float} object. The
     
* result is the integer bit representation, exactly as produced
     
* by the method {@link #floatToIntBits(float)}, of the primitive
     
* {@code float} value represented by this {@code Float}
     
* object.
     
*
     
* @return a hash code value for this object.
     
*/

    
@Override
    
public int hashCode() {
        
return Float.hashCode(value);
    
}

    
/**
     
* Returns a hash code for a {@code float} value; compatible with
     
* {@code Float.hashCode()}.
     
*
     
* @param value the value to hash
     
* @return a hash code value for a {@code float} value.
     
* @since 1.8
     
*/

    
public static int hashCode(float value) {
        
return floatToIntBits(value);
    
}

    
/**

     
* Compares this object against the specified object.
  
The result
     
* is {@code true} if and only if the argument is not
     
* {@code null} and is a {@code Float} object that
     
* represents a {@code float} with the same value as the
     
* {@code float} represented by this object. For this
     
* purpose, two {@code float} values are considered to be the
     
* same if and only if the method {@link #floatToIntBits(float)}
     
* returns the identical {@code int} value when applied to
     
* each.
     
*
     
* <p>Note that in most cases, for two instances of class
     
* {@code Float}, {@code f1} and {@code f2}, the value
     
* of {@code f1.equals(f2)} is {@code true} if and only if
     
*
     
* <blockquote><pre>
     
*
   
f1.floatValue() == f2.floatValue()
     
* </pre></blockquote>
     
*
     
* <p>also has the value {@code true}. However, there are two exceptions:
     
* <ul>
     
* <li>If {@code f1} and {@code f2} both represent
     
*{@code Float.NaN}, then the {@code equals} method returns
     
*{@code true}, even though {@code Float.NaN==Float.NaN}
     
*has the value {@code false}.
     
* <li>If {@code f1} represents {@code +0.0f} while
     
*{@code f2} represents {@code -0.0f}, or vice
     
*versa, the {@code equal} test has the value
     
*{@code false}, even though {@code 0.0f==-0.0f}
     
*has the value {@code true}.
     
* </ul>
     
*
     
* This definition allows hash tables to operate properly.
     
*
     
* @param obj the object to be compared
     
* @return
  
{@code true} if the objects are the same;
     
*
          
{@code false} otherwise.
     
* @see java.lang.Float#floatToIntBits(float)
     
*/

    
public boolean equals(Object obj) {
        
return (obj instanceof Float)
               
&& (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
    
}

    
/**
     
* Returns a representation of the specified floating-point value
     
* according to the IEEE 754 floating-point "single format" bit
     
* layout.
     
*
     
* <p>Bit 31 (the bit that is selected by the mask
     
* {@code 0x80000000}) represents the sign of the floating-point
     
* number.
     
* Bits 30-23 (the bits that are selected by the mask
     
* {@code 0x7f800000}) represent the exponent.
     
* Bits 22-0 (the bits that are selected by the mask
     
* {@code 0x007fffff}) represent the significand (sometimes called
     
* the mantissa) of the floating-point number.
     
*
     
* <p>If the argument is positive infinity, the result is
     
* {@code 0x7f800000}.
     
*
     
* <p>If the argument is negative infinity, the result is
     
* {@code 0xff800000}.
     
*
     
* <p>If the argument is NaN, the result is {@code 0x7fc00000}.
     
*
     
* <p>In all cases, the result is an integer that, when given to the
     
* {@link #intBitsToFloat(int)} method, will produce a floating-point
     
* value the same as the argument to {@code floatToIntBits}
     
* (except all NaN values are collapsed to a single
     
* "canonical" NaN value).
     
*
     
* @param
   
valuea floating-point number.
     
* @return the bits that represent the floating-point number.
     
*/

    
public static int floatToIntBits(float value) {
        
int result = floatToRawIntBits(value);
        
// Check for NaN based on values of bit fields, maximum
        
// exponent and nonzero significand.
        
if ( ((result & FloatConsts.EXP_BIT_MASK) ==
              
FloatConsts.EXP_BIT_MASK) &&
             
(result & FloatConsts.SIGNIF_BIT_MASK) != 0)
            
result = 0x7fc00000;
        
return result;
    
}

    
/**
     
* Returns a representation of the specified floating-point value
     
* according to the IEEE 754 floating-point "single format" bit
     
* layout, preserving Not-a-Number (NaN) values.
     
*
     
* <p>Bit 31 (the bit that is selected by the mask
     
* {@code 0x80000000}) represents the sign of the floating-point
     
* number.
     
* Bits 30-23 (the bits that are selected by the mask
     
* {@code 0x7f800000}) represent the exponent.
     
* Bits 22-0 (the bits that are selected by the mask
     
* {@code 0x007fffff}) represent the significand (sometimes called
     
* the mantissa) of the floating-point number.
     
*
     
* <p>If the argument is positive infinity, the result is
     
* {@code 0x7f800000}.
     
*
     
* <p>If the argument is negative infinity, the result is
     
* {@code 0xff800000}.
     
*
     
* <p>If the argument is NaN, the result is the integer representing
     
* the actual NaN value.
  
Unlike the {@code floatToIntBits}
     
* method, {@code floatToRawIntBits} does not collapse all the
     
* bit patterns encoding a NaN to a single "canonical"
     
* NaN value.
     
*
     
* <p>In all cases, the result is an integer that, when given to the
     
* {@link #intBitsToFloat(int)} method, will produce a
     
* floating-point value the same as the argument to
     
* {@code floatToRawIntBits}.
     
*
     
* @param
   
valuea floating-point number.
     
* @return the bits that represent the floating-point number.
     
* @since 1.3
     
*/

    
public static native int floatToRawIntBits(float value);

    
/**
     
* Returns the {@code float} value corresponding to a given
     
* bit representation.
     
* The argument is considered to be a representation of a
     
* floating-point value according to the IEEE 754 floating-point
     
* "single format" bit layout.
     
*
     
* <p>If the argument is {@code 0x7f800000}, the result is positive
     
* infinity.
     
*
     
* <p>If the argument is {@code 0xff800000}, the result is negative
     
* infinity.
     
*
     
* <p>If the argument is any value in the range
     
* {@code 0x7f800001} through {@code 0x7fffffff} or in
     
* the range {@code 0xff800001} through
     
* {@code 0xffffffff}, the result is a NaN.
  
No IEEE 754
     
* floating-point operation provided by Java can distinguish
     
* between two NaN values of the same type with different bit
     
* patterns.
  
Distinct values of NaN are only distinguishable by
     
* use of the {@code Float.floatToRawIntBits} method.
     
*
     
* <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
     
* values that can be computed from the argument:
     
*
     
* <blockquote><pre>{@code
     
* int s = ((bits >> 31) == 0) ? 1 : -1;
     
* int e = ((bits >> 23) & 0xff);
     
* int m = (e == 0) ?
     
*
                 
(bits & 0x7fffff) << 1 :
     
*
                 
(bits & 0x7fffff) | 0x800000;
     
* }</pre></blockquote>
     
*
     
* Then the floating-point result equals the value of the mathematical
     
* expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
     
*
     
* <p>Note that this method may not be able to return a
     
* {@code float} NaN with exactly same bit pattern as the
     
* {@code int} argument.
  
IEEE 754 distinguishes between two
     
* kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.
  
The
     
* differences between the two kinds of NaN are generally not
     
* visible in Java.
  
Arithmetic operations on signaling NaNs turn
     
* them into quiet NaNs with a different, but often similar, bit
     
* pattern.
  
However, on some processors merely copying a
     
* signaling NaN also performs that conversion.
  
In particular,
     
* copying a signaling NaN to return it to the calling method may
     
* perform this conversion.
  
So {@code intBitsToFloat} may
     
* not be able to return a {@code float} with a signaling NaN
     
* bit pattern.
  
Consequently, for some {@code int} values,
     
* {@code floatToRawIntBits(intBitsToFloat(start))} may
     
* <i>not</i> equal {@code start}.
  
Moreover, which
     
* particular bit patterns represent signaling NaNs is platform
     
* dependent; although all NaN bit patterns, quiet or signaling,
     
* must be in the NaN range identified above.
     
*
     
* @param
   
bitsan integer.
     
* @return
  
the {@code float} floating-point value with the same bit
     
*
          
pattern.
     
*/

    
public static native float intBitsToFloat(int bits);

    
/**
     
* Compares two {@code Float} objects numerically.
  
There are
     
* two ways in which comparisons performed by this method differ
     
* from those performed by the Java language numerical comparison
     
* operators ({@code <, <=, ==, >=, >}) when
     
* applied to primitive {@code float} values:
     
*
     
* <ul><li>
     
*
          
{@code Float.NaN} is considered by this method to
     
*
          
be equal to itself and greater than all other
     
*
          
{@code float} values
     
*
          
(including {@code Float.POSITIVE_INFINITY}).
     
* <li>
     
*
          
{@code 0.0f} is considered by this method to be greater
     
*
          
than {@code -0.0f}.
     
* </ul>
     
*
     
* This ensures that the <i>natural ordering</i> of {@code Float}
     
* objects imposed by this method is <i>consistent with equals</i>.
     
*
     
* @param
   
anotherFloatthe {@code Float} to be compared.
     
* @return
  
the value {@code 0} if {@code anotherFloat} is
     
*
          
numerically equal to this {@code Float}; a value
     
*
          
less than {@code 0} if this {@code Float}
     
*
          
is numerically less than {@code anotherFloat};
     
*
          
and a value greater than {@code 0} if this
     
*
          
{@code Float} is numerically greater than
     
*
          
{@code anotherFloat}.
     
*
     
* @since
   
1.2
     
* @see Comparable#compareTo(Object)
     
*/

    
public int compareTo(Float anotherFloat) {
        
return Float.compare(value, anotherFloat.value);
    
}

    
/**
     
* Compares the two specified {@code float} values. The sign
     
* of the integer value returned is the same as that of the
     
* integer that would be returned by the call:
     
* <pre>
     
*
    
new Float(f1).compareTo(new Float(f2))
     
* </pre>
     
*
     
* @param
   
f1
        
the first {@code float} to compare.
     
* @param
   
f2
        
the second {@code float} to compare.
     
* @return
  
the value {@code 0} if {@code f1} is
     
*
          
numerically equal to {@code f2}; a value less than
     
*
          
{@code 0} if {@code f1} is numerically less than
     
*
          
{@code f2}; and a value greater than {@code 0}
     
*
          
if {@code f1} is numerically greater than
     
*
          
{@code f2}.
     
* @since 1.4
     
*/

    
public static int compare(float f1, float f2) {
        
if (f1 < f2)
            
return -1;
           
// Neither val is NaN, thisVal is smaller
        
if (f1 > f2)
            
return 1;
            
// Neither val is NaN, thisVal is larger

        
// Cannot use floatToRawIntBits because of possibility of NaNs.
        
int thisBits
    
= Float.floatToIntBits(f1);
        
int anotherBits = Float.floatToIntBits(f2);

        
return (thisBits == anotherBits ?
  
0 : // Values are equal
                
(thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
                 
1));
                          
// (0.0, -0.0) or (NaN, !NaN)
    
}

    
/**
     
* Adds two {@code float} values together as per the + operator.
     
*
     
* @param a the first operand
     
* @param b the second operand
     
* @return the sum of {@code a} and {@code b}
     
* @jls 4.2.4 Floating-Point Operations
     
*
 

     
* @since 1.8
     
*/

    
public static float sum(float a, float b) {
        
return a + b;
    
}

    
/**
     
* Returns the greater of two {@code float} values
     
* as if by calling {@link Math#max(float, float) Math.max}.
     
*
     
* @param a the first operand
     
* @param b the second operand
     
* @return the greater of {@code a} and {@code b}
     
*
 

     
* @since 1.8
     
*/

    
public static float max(float a, float b) {
        
return Math.max(a, b);
    
}

    
/**
     
* Returns the smaller of two {@code float} values
     
* as if by calling {@link Math#min(float, float) Math.min}.
     
*
     
* @param a the first operand
     
* @param b the second operand
     
* @return the smaller of {@code a} and {@code b}
     
*
 

     
* @since 1.8
     
*/

    
public static float min(float a, float b) {
        
return Math.min(a, b);
    
}

    
/** use serialVersionUID from JDK 1.0.2 for interoperability */
    
private static final long serialVersionUID = -2671257302660747028L;
}