/*
 
* Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
 
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 
*
 
* This code is free software; you can redistribute it and/or modify it
 
* under the terms of the GNU General Public License version 2 only, as
 
* published by the Free Software Foundation.
  
Oracle designates this
 
* particular file as subject to the "Classpath" exception as provided
 
* by Oracle in the LICENSE file that accompanied this code.
 
*
 
* This code is distributed in the hope that it will be useful, but WITHOUT
 
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 
* FITNESS FOR A PARTICULAR PURPOSE.
  
See the GNU General Public License
 
* version 2 for more details (a copy is included in the LICENSE file that
 
* accompanied this code).
 
*
 
* You should have received a copy of the GNU General Public License version
 
* 2 along with this work; if not, write to the Free Software Foundation,
 
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 
*
 
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 
* or visit www.oracle.com if you need additional information or have any
 
* questions.
 
*/

/*
 
* This file is available under and governed by the GNU General Public
 
* License version 2 only, as published by the Free Software Foundation.
 
* However, the following notice accompanied the original version of this
 
* file:
 
*
 
* Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
 
*
 
* All rights reserved.
 
*
 
* Redistribution and use in source and binary forms, with or without
 
* modification, are permitted provided that the following conditions are met:
 
*
 
*
  
* Redistributions of source code must retain the above copyright notice,
 
*
    
this list of conditions and the following disclaimer.
 
*
 
*
  
* Redistributions in binary form must reproduce the above copyright notice,
 
*
    
this list of conditions and the following disclaimer in the documentation
 
*
    
and/or other materials provided with the distribution.
 
*
 
*
  
* Neither the name of JSR-310 nor the names of its contributors
 
*
    
may be used to endorse or promote products derived from this software
 
*
    
without specific prior written permission.
 
*
 
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
*/

package java.time;

import static java.time.temporal.ChronoField.INSTANT_SECONDS;
import static java.time.temporal.ChronoField.NANO_OF_SECOND;
import static java.time.temporal.ChronoField.OFFSET_SECONDS;

import java.io.DataOutput;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.InvalidObjectException;
import java.io.ObjectInputStream;
import java.io.Serializable;
import java.time.chrono.ChronoZonedDateTime;
import java.time.format.DateTimeFormatter;
import java.time.format.DateTimeParseException;
import java.time.temporal.ChronoField;
import java.time.temporal.ChronoUnit;
import java.time.temporal.Temporal;
import java.time.temporal.TemporalAccessor;
import java.time.temporal.TemporalAdjuster;
import java.time.temporal.TemporalAmount;
import java.time.temporal.TemporalField;
import java.time.temporal.TemporalQueries;
import java.time.temporal.TemporalQuery;
import java.time.temporal.TemporalUnit;
import java.time.temporal.UnsupportedTemporalTypeException;
import java.time.temporal.ValueRange;
import java.time.zone.ZoneOffsetTransition;
import java.time.zone.ZoneRules;
import java.util.List;
import java.util.Objects;

/**
 
* A date-time with a time-zone in the ISO-8601 calendar system,
 
* such as {@code 2007-12-03T10:15:30+01:00 Europe/Paris}.
 
* <p>
 
* {@code ZonedDateTime} is an immutable representation of a date-time with a time-zone.
 
* This class stores all date and time fields, to a precision of nanoseconds,
 
* and a time-zone, with a zone offset used to handle ambiguous local date-times.
 
* For example, the value
 
* "2nd October 2007 at 13:45.30.123456789 +02:00 in the Europe/Paris time-zone"
 
* can be stored in a {@code ZonedDateTime}.
 
* <p>
 
* This class handles conversion from the local time-line of {@code LocalDateTime}
 
* to the instant time-line of {@code Instant}.
 
* The difference between the two time-lines is the offset from UTC/Greenwich,
 
* represented by a {@code ZoneOffset}.
 
* <p>
 
* Converting between the two time-lines involves calculating the offset using the
 
* {@link ZoneRules rules} accessed from the {@code ZoneId}.
 
* Obtaining the offset for an instant is simple, as there is exactly one valid
 
* offset for each instant. By contrast, obtaining the offset for a local date-time
 
* is not straightforward. There are three cases:
 
* <ul>
 
* <li>Normal, with one valid offset. For the vast majority of the year, the normal
 
*
  
case applies, where there is a single valid offset for the local date-time.</li>
 
* <li>Gap, with zero valid offsets. This is when clocks jump forward typically
 
*
  
due to the spring daylight savings change from "winter" to "summer".
 
*
  
In a gap there are local date-time values with no valid offset.</li>
 
* <li>Overlap, with two valid offsets. This is when clocks are set back typically
 
*
  
due to the autumn daylight savings change from "summer" to "winter".
 
*
  
In an overlap there are local date-time values with two valid offsets.</li>
 
* </ul>
 
* <p>
 
* Any method that converts directly or implicitly from a local date-time to an
 
* instant by obtaining the offset has the potential to be complicated.
 
* <p>
 
* For Gaps, the general strategy is that if the local date-time falls in the
 
* middle of a Gap, then the resulting zoned date-time will have a local date-time
 
* shifted forwards by the length of the Gap, resulting in a date-time in the later
 
* offset, typically "summer" time.
 
* <p>
 
* For Overlaps, the general strategy is that if the local date-time falls in the
 
* middle of an Overlap, then the previous offset will be retained. If there is no
 
* previous offset, or the previous offset is invalid, then the earlier offset is
 
* used, typically "summer" time.. Two additional methods,
 
*
 
and {@link #withLaterOffsetAtOverlap()},
 
* help manage the case of an overlap.
 
* <p>
 
* In terms of design, this class should be viewed primarily as the combination
 
* of a {@code LocalDateTime} and a {@code ZoneId}. The {@code ZoneOffset} is
 
* a vital, but secondary, piece of information, used to ensure that the class
 
* represents an instant, especially during a daylight savings overlap.
 
*
 
* <p>
 
* This is a<a href="{@docRoot}/java/lang/doc-files/ValueBased.html">value-based</a>
 
* class; use of identity-sensitive operations (including reference equality
 
* ({@code ==}), identity hash code, or synchronization) on instances of
 
* {@code ZonedDateTime} may have unpredictable results and should be avoided.
 
* The {@code equals} method should be used for comparisons.
 
*
 
* @implSpec
 
* A {@code ZonedDateTime} holds state equivalent to three separate objects,
 
* a {@code LocalDateTime}, a {@code ZoneId} and the resolved {@code ZoneOffset}.
 
* The offset and local date-time are used to define an instant when necessary.
 
* The zone ID is used to obtain the rules for how and when the offset changes.
 
* The offset cannot be freely set, as the zone controls which offsets are valid.
 
* <p>
 
* This class is immutable and thread-safe.
 
*
 
* @since 1.8
 
*/

public final class ZonedDateTime
        
implements Temporal, ChronoZonedDateTime<LocalDate>, Serializable {

    
/**
     
* Serialization version.
     
*/
    
private static final long serialVersionUID = -6260982410461394882L;

    
/**
     
* The local date-time.
     
*/
    
private final LocalDateTime dateTime;
    
/**
     
* The offset from UTC/Greenwich.
     
*/
    
private final ZoneOffset offset;
    
/**
     
* The time-zone.
     
*/
    
private final ZoneId zone;

    
//-----------------------------------------------------------------------
    
/**
     
* Obtains the current date-time from the system clock in the default time-zone.
     
* <p>
     
* This will query the {@link Clock#systemDefaultZone() system clock} in the default
     
* time-zone to obtain the current date-time.
     
* The zone and offset will be set based on the time-zone in the clock.
     
* <p>
     
* Using this method will prevent the ability to use an alternate clock for testing
     
* because the clock is hard-coded.
     
*
     
* @return the current date-time using the system clock, not null
     
*/

    
public static ZonedDateTime now() {
        
return now(Clock.systemDefaultZone());
    
}

    
/**
     
* Obtains the current date-time from the system clock in the specified time-zone.
     
* <p>
     
* This will query the {@link Clock#system(ZoneId) system clock} to obtain the current date-time.
     
* Specifying the time-zone avoids dependence on the default time-zone.
     
* The offset will be calculated from the specified time-zone.
     
* <p>
     
* Using this method will prevent the ability to use an alternate clock for testing
     
* because the clock is hard-coded.
     
*
     
* @param zone
  
the zone ID to use, not null
     
* @return the current date-time using the system clock, not null
     
*/

    
public static ZonedDateTime now(ZoneId zone) {
        
return now(Clock.system(zone));
    
}

    
/**
     
* Obtains the current date-time from the specified clock.
     
* <p>
     
* This will query the specified clock to obtain the current date-time.
     
* The zone and offset will be set based on the time-zone in the clock.
     
* <p>
     
* Using this method allows the use of an alternate clock for testing.
     
* The alternate clock may be introduced using {@link Clock dependency injection}.
     
*
     
* @param clock
  
the clock to use, not null
     
* @return the current date-time, not null
     
*/

    
public static ZonedDateTime now(Clock clock) {
        
Objects.requireNonNull(clock, "clock");
        
final Instant now = clock.instant();
  
// called once
        
return ofInstant(now, clock.getZone());
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Obtains an instance of {@code ZonedDateTime} from a local date and time.
     
* <p>
     
* This creates a zoned date-time matching the input local date and time as closely as possible.
     
* Time-zone rules, such as daylight savings, mean that not every local date-time
     
* is valid for the specified zone, thus the local date-time may be adjusted.
     
* <p>
     
* The local date time and first combined to form a local date-time.
     
* The local date-time is then resolved to a single instant on the time-line.
     
* This is achieved by finding a valid offset from UTC/Greenwich for the local
     
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
     
*<p>
     
* In most cases, there is only one valid offset for a local date-time.
     
* In the case of an overlap, when clocks are set back, there are two valid offsets.
     
* This method uses the earlier offset typically corresponding to "summer".
     
* <p>
     
* In the case of a gap, when clocks jump forward, there is no valid offset.
     
* Instead, the local date-time is adjusted to be later by the length of the gap.
     
* For a typical one hour daylight savings change, the local date-time will be
     
* moved one hour later into the offset typically corresponding to "summer".
     
*
     
* @param date
  
the local date, not null
     
* @param time
  
the local time, not null
     
* @param zone
  
the time-zone, not null
     
* @return the offset date-time, not null
     
*/

    
public static ZonedDateTime of(LocalDate date, LocalTime time, ZoneId zone) {
        
return of(LocalDateTime.of(date, time), zone);
    
}

    
/**
     
* Obtains an instance of {@code ZonedDateTime} from a local date-time.
     
* <p>
     
* This creates a zoned date-time matching the input local date-time as closely as possible.
     
* Time-zone rules, such as daylight savings, mean that not every local date-time
     
* is valid for the specified zone, thus the local date-time may be adjusted.
     
* <p>
     
* The local date-time is resolved to a single instant on the time-line.
     
* This is achieved by finding a valid offset from UTC/Greenwich for the local
     
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
     
*<p>
     
* In most cases, there is only one valid offset for a local date-time.
     
* In the case of an overlap, when clocks are set back, there are two valid offsets.
     
* This method uses the earlier offset typically corresponding to "summer".
     
* <p>
     
* In the case of a gap, when clocks jump forward, there is no valid offset.
     
* Instead, the local date-time is adjusted to be later by the length of the gap.
     
* For a typical one hour daylight savings change, the local date-time will be
     
* moved one hour later into the offset typically corresponding to "summer".
     
*
     
* @param localDateTime
  
the local date-time, not null
     
* @param zone
  
the time-zone, not null
     
* @return the zoned date-time, not null
     
*/

    
public static ZonedDateTime of(LocalDateTime localDateTime, ZoneId zone) {
        
return ofLocal(localDateTime, zone, null);
    
}

    
/**
     
* Obtains an instance of {@code ZonedDateTime} from a year, month, day,
     
* hour, minute, second, nanosecond and time-zone.
     
* <p>
     
* This creates a zoned date-time matching the local date-time of the seven
     
* specified fields as closely as possible.
     
* Time-zone rules, such as daylight savings, mean that not every local date-time
     
* is valid for the specified zone, thus the local date-time may be adjusted.
     
* <p>
     
* The local date-time is resolved to a single instant on the time-line.
     
* This is achieved by finding a valid offset from UTC/Greenwich for the local
     
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
     
*<p>
     
* In most cases, there is only one valid offset for a local date-time.
     
* In the case of an overlap, when clocks are set back, there are two valid offsets.
     
* This method uses the earlier offset typically corresponding to "summer".
     
* <p>
     
* In the case of a gap, when clocks jump forward, there is no valid offset.
     
* Instead, the local date-time is adjusted to be later by the length of the gap.
     
* For a typical one hour daylight savings change, the local date-time will be
     
* moved one hour later into the offset typically corresponding to "summer".
     
* <p>
     
* This method exists primarily for writing test cases.
     
* Non test-code will typically use other methods to create an offset time.
     
* {@code LocalDateTime} has five additional convenience variants of the
     
* equivalent factory method taking fewer arguments.
     
* They are not provided here to reduce the footprint of the API.
     
*
     
* @param year
  
the year to represent, from MIN_YEAR to MAX_YEAR
     
* @param month
  
the month-of-year to represent, from 1 (January) to 12 (December)
     
* @param dayOfMonth
  
the day-of-month to represent, from 1 to 31
     
* @param hour
  
the hour-of-day to represent, from 0 to 23
     
* @param minute
  
the minute-of-hour to represent, from 0 to 59
     
* @param second
  
the second-of-minute to represent, from 0 to 59
     
* @param nanoOfSecond
  
the nano-of-second to represent, from 0 to 999,999,999
     
* @param zone
  
the time-zone, not null
     
* @return the offset date-time, not null
     
* @throws DateTimeException if the value of any field is out of range, or
     
*
  
if the day-of-month is invalid for the month-year
     
*/

    
public static ZonedDateTime of(
            
int year, int month, int dayOfMonth,
            
int hour, int minute, int second, int nanoOfSecond, ZoneId zone) {
        
LocalDateTime dt = LocalDateTime.of(year, month, dayOfMonth, hour, minute, second, nanoOfSecond);
        
return ofLocal(dt, zone, null);
    
}

    
/**
     
* Obtains an instance of {@code ZonedDateTime} from a local date-time
     
* using the preferred offset if possible.
     
* <p>
     
* The local date-time is resolved to a single instant on the time-line.
     
* This is achieved by finding a valid offset from UTC/Greenwich for the local
     
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
     
*<p>
     
* In most cases, there is only one valid offset for a local date-time.
     
* In the case of an overlap, where clocks are set back, there are two valid offsets.
     
* If the preferred offset is one of the valid offsets then it is used.
     
* Otherwise the earlier valid offset is used, typically corresponding to "summer".
     
* <p>
     
* In the case of a gap, where clocks jump forward, there is no valid offset.
     
* Instead, the local date-time is adjusted to be later by the length of the gap.
     
* For a typical one hour daylight savings change, the local date-time will be
     
* moved one hour later into the offset typically corresponding to "summer".
     
*
     
* @param localDateTime
  
the local date-time, not null
     
* @param zone
  
the time-zone, not null
     
* @param preferredOffset
  
the zone offset, null if no preference
     
* @return the zoned date-time, not null
     
*/

    
public static ZonedDateTime ofLocal(LocalDateTime localDateTime, ZoneId zone, ZoneOffset preferredOffset) {
        
Objects.requireNonNull(localDateTime, "localDateTime");
        
Objects.requireNonNull(zone, "zone");
        
if (zone instanceof ZoneOffset) {
            
return new ZonedDateTime(localDateTime, (ZoneOffset) zone, zone);
        
}
        
ZoneRules rules = zone.getRules();
        
List<ZoneOffset> validOffsets = rules.getValidOffsets(localDateTime);
        
ZoneOffset offset;
        
if (validOffsets.size() == 1) {
            
offset = validOffsets.get(0);
        
} else if (validOffsets.size() == 0) {
            
ZoneOffsetTransition trans = rules.getTransition(localDateTime);
            
localDateTime = localDateTime.plusSeconds(trans.getDuration().getSeconds());
            
offset = trans.getOffsetAfter();
        
} else {
            
if (preferredOffset != null && validOffsets.contains(preferredOffset)) {
                
offset = preferredOffset;
            
} else {
                
offset = Objects.requireNonNull(validOffsets.get(0), "offset");
  
// protect against bad ZoneRules
            
}
        
}
        
return new ZonedDateTime(localDateTime, offset, zone);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Obtains an instance of {@code ZonedDateTime} from an {@code Instant}.
     
* <p>
     
* This creates a zoned date-time with the same instant as that specified.
     
* Calling {@link #toInstant()} will return an instant equal to the one used here.
     
* <p>
     
* Converting an instant to a zoned date-time is simple as there is only one valid
     
* offset for each instant.
     
*
     
* @param instant
  
the instant to create the date-time from, not null
     
* @param zone
  
the time-zone, not null
     
* @return the zoned date-time, not null
     
* @throws DateTimeException if the result exceeds the supported range
     
*/

    
public static ZonedDateTime ofInstant(Instant instant, ZoneId zone) {
        
Objects.requireNonNull(instant, "instant");
        
Objects.requireNonNull(zone, "zone");
        
return create(instant.getEpochSecond(), instant.getNano(), zone);
    
}

    
/**
     
* Obtains an instance of {@code ZonedDateTime} from the instant formed by combining
     
* the local date-time and offset.
     
* <p>
     
* This creates a zoned date-time by {@link LocalDateTime#toInstant(ZoneOffset) combining}
     
* the {@code LocalDateTime} and {@code ZoneOffset}.
     
* This combination uniquely specifies an instant without ambiguity.
     
* <p>
     
* Converting an instant to a zoned date-time is simple as there is only one valid
     
* offset for each instant. If the valid offset is different to the offset specified,
     
* then the date-time and offset of the zoned date-time will differ from those specified.
     
* <p>
     
* If the {@code ZoneId} to be used is a {@code ZoneOffset}, this method is equivalent
     
* to {@link #of(LocalDateTime, ZoneId)}.
     
*
     
* @param localDateTime
  
the local date-time, not null
     
* @param offset
  
the zone offset, not null
     
* @param zone
  
the time-zone, not null
     
* @return the zoned date-time, not null
     
*/

    
public static ZonedDateTime ofInstant(LocalDateTime localDateTime, ZoneOffset offset, ZoneId zone) {
        
Objects.requireNonNull(localDateTime, "localDateTime");
        
Objects.requireNonNull(offset, "offset");
        
Objects.requireNonNull(zone, "zone");
        
if (zone.getRules().isValidOffset(localDateTime, offset)) {
            
return new ZonedDateTime(localDateTime, offset, zone);
        
}
        
return create(localDateTime.toEpochSecond(offset), localDateTime.getNano(), zone);
    
}

    
/**
     
* Obtains an instance of {@code ZonedDateTime} using seconds from the
     
* epoch of 1970-01-01T00:00:00Z.
     
*
     
* @param epochSecond
  
the number of seconds from the epoch of 1970-01-01T00:00:00Z
     
* @param nanoOfSecond
  
the nanosecond within the second, from 0 to 999,999,999
     
* @param zone
  
the time-zone, not null
     
* @return the zoned date-time, not null
     
* @throws DateTimeException if the result exceeds the supported range
     
*/

    
private static ZonedDateTime create(long epochSecond, int nanoOfSecond, ZoneId zone) {
        
ZoneRules rules = zone.getRules();
        
Instant instant = Instant.ofEpochSecond(epochSecond, nanoOfSecond);
  
// TODO: rules should be queryable by epochSeconds
        
ZoneOffset offset = rules.getOffset(instant);
        
LocalDateTime ldt = LocalDateTime.ofEpochSecond(epochSecond, nanoOfSecond, offset);
        
return new ZonedDateTime(ldt, offset, zone);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Obtains an instance of {@code ZonedDateTime} strictly validating the
     
* combination of local date-time, offset and zone ID.
     
* <p>
     
* This creates a zoned date-time ensuring that the offset is valid for the
     
* local date-time according to the rules of the specified zone.
     
* If the offset is invalid, an exception is thrown.
     
*
     
* @param localDateTime
  
the local date-time, not null
     
* @param offset
  
the zone offset, not null
     
* @param zone
  
the time-zone, not null
     
* @return the zoned date-time, not null
     
*/

    
public static ZonedDateTime ofStrict(LocalDateTime localDateTime, ZoneOffset offset, ZoneId zone) {
        
Objects.requireNonNull(localDateTime, "localDateTime");
        
Objects.requireNonNull(offset, "offset");
        
Objects.requireNonNull(zone, "zone");
        
ZoneRules rules = zone.getRules();
        
if (rules.isValidOffset(localDateTime, offset) == false) {
            
ZoneOffsetTransition trans = rules.getTransition(localDateTime);
            
if (trans != null && trans.isGap()) {
                
// error message says daylight savings for simplicity
                
// even though there are other kinds of gaps
                
throw new DateTimeException("LocalDateTime '" + localDateTime +
                        
"' does not exist in zone '" + zone +
                        
"' due to a gap in the local time-line, typically caused by daylight savings");
            
}
            
throw new DateTimeException("ZoneOffset '" + offset + "' is not valid for LocalDateTime '" +
                    
localDateTime + "' in zone '" + zone + "'");
        
}
        
return new ZonedDateTime(localDateTime, offset, zone);
    
}

    
/**
     
* Obtains an instance of {@code ZonedDateTime} leniently, for advanced use cases,
     
* allowing any combination of local date-time, offset and zone ID.
     
* <p>
     
* This creates a zoned date-time with no checks other than no nulls.
     
* This means that the resulting zoned date-time may have an offset that is in conflict
     
* with the zone ID.
     
* <p>
     
* This method is intended for advanced use cases.
     
* For example, consider the case where a zoned date-time with valid fields is created
     
* and then stored in a database or serialization-based store. At some later point,
     
* the object is then re-loaded. However, between those points in time, the government
     
* that defined the time-zone has changed the rules, such that the originally stored
     
* local date-time now does not occur. This method can be used to create the object
     
* in an "invalid" state, despite the change in rules.
     
*
     
* @param localDateTime
  
the local date-time, not null
     
* @param offset
  
the zone offset, not null
     
* @param zone
  
the time-zone, not null
     
* @return the zoned date-time, not null
     
*/

    
private static ZonedDateTime ofLenient(LocalDateTime localDateTime, ZoneOffset offset, ZoneId zone) {
        
Objects.requireNonNull(localDateTime, "localDateTime");
        
Objects.requireNonNull(offset, "offset");
        
Objects.requireNonNull(zone, "zone");
        
if (zone instanceof ZoneOffset && offset.equals(zone) == false) {
            
throw new IllegalArgumentException("ZoneId must match ZoneOffset");
        
}
        
return new ZonedDateTime(localDateTime, offset, zone);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Obtains an instance of {@code ZonedDateTime} from a temporal object.
     
* <p>
     
* This obtains a zoned date-time based on the specified temporal.
     
* A {@code TemporalAccessor} represents an arbitrary set of date and time information,
     
* which this factory converts to an instance of {@code ZonedDateTime}.
     
* <p>
     
* The conversion will first obtain a {@code ZoneId} from the temporal object,
     
* falling back to a {@code ZoneOffset} if necessary. It will then try to obtain
     
* an {@code Instant}, falling back to a {@code LocalDateTime} if necessary.
     
* The result will be either the combination of {@code ZoneId} or {@code ZoneOffset}
     
* with {@code Instant} or {@code LocalDateTime}.
     
* Implementations are permitted to perform optimizations such as accessing
     
* those fields that are equivalent to the relevant objects.
     
* <p>
     
* This method matches the signature of the functional interface {@link TemporalQuery}
     
* allowing it to be used as a query via method reference, {@code ZonedDateTime::from}.
     
*
     
* @param temporal
  
the temporal object to convert, not null
     
* @return the zoned date-time, not null
     
* @throws DateTimeException if unable to convert to an {@code ZonedDateTime}
     
*/

    
public static ZonedDateTime from(TemporalAccessor temporal) {
        
if (temporal instanceof ZonedDateTime) {
            
return (ZonedDateTime) temporal;
        
}
        
try {
            
ZoneId zone = ZoneId.from(temporal);
            
if (temporal.isSupported(INSTANT_SECONDS)) {
                
long epochSecond = temporal.getLong(INSTANT_SECONDS);
                
int nanoOfSecond = temporal.get(NANO_OF_SECOND);
                
return create(epochSecond, nanoOfSecond, zone);
            
} else {
                
LocalDate date = LocalDate.from(temporal);
                
LocalTime time = LocalTime.from(temporal);
                
return of(date, time, zone);
            
}
        
} catch (DateTimeException ex) {
            
throw new DateTimeException("Unable to obtain ZonedDateTime from TemporalAccessor: " +
                    
temporal + " of type " + temporal.getClass().getName(), ex);
        
}
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Obtains an instance of {@code ZonedDateTime} from a text string such as
     
* {@code 2007-12-03T10:15:30+01:00[Europe/Paris]}.
     
* <p>
     
* The string must represent a valid date-time and is parsed using
     
*
 
.
     
*
     
* @param text
  
the text to parse such as "2007-12-03T10:15:30+01:00[Europe/Paris]", not null
     
* @return the parsed zoned date-time, not null
     
* @throws DateTimeParseException if the text cannot be parsed
     
*/

    
public static ZonedDateTime parse(CharSequence text) {
        
return parse(text, DateTimeFormatter.ISO_ZONED_DATE_TIME);
    
}

    
/**
     
* Obtains an instance of {@code ZonedDateTime} from a text string using a specific formatter.
     
* <p>
     
* The text is parsed using the formatter, returning a date-time.
     
*
     
* @param text
  
the text to parse, not null
     
* @param formatter
  
the formatter to use, not null
     
* @return the parsed zoned date-time, not null
     
* @throws DateTimeParseException if the text cannot be parsed
     
*/

    
public static ZonedDateTime parse(CharSequence text, DateTimeFormatter formatter) {
        
Objects.requireNonNull(formatter, "formatter");
        
return formatter.parse(text, ZonedDateTime::from);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Constructor.
     
*
     
* @param dateTime
  
the date-time, validated as not null
     
* @param offset
  
the zone offset, validated as not null
     
* @param zone
  
the time-zone, validated as not null
     
*/

    
private ZonedDateTime(LocalDateTime dateTime, ZoneOffset offset, ZoneId zone) {
        
this.dateTime = dateTime;
        
this.offset = offset;
        
this.zone = zone;
    
}

    
/**
     
* Resolves the new local date-time using this zone ID, retaining the offset if possible.
     
*
     
* @param newDateTime
  
the new local date-time, not null
     
* @return the zoned date-time, not null
     
*/

    
private ZonedDateTime resolveLocal(LocalDateTime newDateTime) {
        
return ofLocal(newDateTime, zone, offset);
    
}

    
/**
     
* Resolves the new local date-time using the offset to identify the instant.
     
*
     
* @param newDateTime
  
the new local date-time, not null
     
* @return the zoned date-time, not null
     
*/

    
private ZonedDateTime resolveInstant(LocalDateTime newDateTime) {
        
return ofInstant(newDateTime, offset, zone);
    
}

    
/**
     
* Resolves the offset into this zoned date-time for the with methods.
     
* <p>
     
* This typically ignores the offset, unless it can be used to switch offset in a DST overlap.
     
*
     
* @param offset
  
the offset, not null
     
* @return the zoned date-time, not null
     
*/

    
private ZonedDateTime resolveOffset(ZoneOffset offset) {
        
if (offset.equals(this.offset) == false && zone.getRules().isValidOffset(dateTime, offset)) {
            
return new ZonedDateTime(dateTime, offset, zone);
        
}
        
return this;
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Checks if the specified field is supported.
     
* <p>
     
* This checks if this date-time can be queried for the specified field.
     
* If false, then calling the {@link #range(TemporalField) range},
     
* {@link #get(TemporalField) get} and {@link #with(TemporalField, long)}
     
* methods will throw an exception.
     
* <p>
     
* If the field is a {@link ChronoField} then the query is implemented here.
     
* The supported fields are:
     
* <ul>
     
* <li>{@code NANO_OF_SECOND}
     
* <li>{@code NANO_OF_DAY}
     
* <li>{@code MICRO_OF_SECOND}
     
* <li>{@code MICRO_OF_DAY}
     
* <li>{@code MILLI_OF_SECOND}
     
* <li>{@code MILLI_OF_DAY}
     
* <li>{@code SECOND_OF_MINUTE}
     
* <li>{@code SECOND_OF_DAY}
     
* <li>{@code MINUTE_OF_HOUR}
     
* <li>{@code MINUTE_OF_DAY}
     
* <li>{@code HOUR_OF_AMPM}
     
* <li>{@code CLOCK_HOUR_OF_AMPM}
     
* <li>{@code HOUR_OF_DAY}
     
* <li>{@code CLOCK_HOUR_OF_DAY}
     
* <li>{@code AMPM_OF_DAY}
     
* <li>{@code DAY_OF_WEEK}
     
* <li>{@code ALIGNED_DAY_OF_WEEK_IN_MONTH}
     
* <li>{@code ALIGNED_DAY_OF_WEEK_IN_YEAR}
     
* <li>{@code DAY_OF_MONTH}
     
* <li>{@code DAY_OF_YEAR}
     
* <li>{@code EPOCH_DAY}
     
* <li>{@code ALIGNED_WEEK_OF_MONTH}
     
* <li>{@code ALIGNED_WEEK_OF_YEAR}
     
* <li>{@code MONTH_OF_YEAR}
     
* <li>{@code PROLEPTIC_MONTH}
     
* <li>{@code YEAR_OF_ERA}
     
* <li>{@code YEAR}
     
* <li>{@code ERA}
     
* <li>{@code INSTANT_SECONDS}
     
* <li>{@code OFFSET_SECONDS}
     
* </ul>
     
* All other {@code ChronoField} instances will return false.
     
* <p>
     
* If the field is not a {@code ChronoField}, then the result of this method
     
* is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
     
* passing {@code this} as the argument.
     
* Whether the field is supported is determined by the field.
     
*
     
* @param field
  
the field to check, null returns false
     
* @return true if the field is supported on this date-time, false if not
     
*/

    
@Override
    
public boolean isSupported(TemporalField field) {
        
return field instanceof ChronoField || (field != null && field.isSupportedBy(this));
    
}

    
/**
     
* Checks if the specified unit is supported.
     
* <p>
     
* This checks if the specified unit can be added to, or subtracted from, this date-time.
     
* If false, then calling the {@link #plus(long, TemporalUnit)} and
     
* {@link #minus(long, TemporalUnit) minus} methods will throw an exception.
     
* <p>
     
* If the unit is a {@link ChronoUnit} then the query is implemented here.
     
* The supported units are:
     
* <ul>
     
* <li>{@code NANOS}
     
* <li>{@code MICROS}
     
* <li>{@code MILLIS}
     
* <li>{@code SECONDS}
     
* <li>{@code MINUTES}
     
* <li>{@code HOURS}
     
* <li>{@code HALF_DAYS}
     
* <li>{@code DAYS}
     
* <li>{@code WEEKS}
     
* <li>{@code MONTHS}
     
* <li>{@code YEARS}
     
* <li>{@code DECADES}
     
* <li>{@code CENTURIES}
     
* <li>{@code MILLENNIA}
     
* <li>{@code ERAS}
     
* </ul>
     
* All other {@code ChronoUnit} instances will return false.
     
* <p>
     
* If the unit is not a {@code ChronoUnit}, then the result of this method
     
* is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)}
     
* passing {@code this} as the argument.
     
* Whether the unit is supported is determined by the unit.
     
*
     
* @param unit
  
the unit to check, null returns false
     
* @return true if the unit can be added/subtracted, false if not
     
*/

    
@Override
  
// override for Javadoc
    
public boolean isSupported(TemporalUnit unit) {
        
return ChronoZonedDateTime.super.isSupported(unit);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Gets the range of valid values for the specified field.
     
* <p>
     
* The range object expresses the minimum and maximum valid values for a field.
     
* This date-time is used to enhance the accuracy of the returned range.
     
* If it is not possible to return the range, because the field is not supported
     
* or for some other reason, an exception is thrown.
     
* <p>
     
* If the field is a {@link ChronoField} then the query is implemented here.
     
* The {@link #isSupported(TemporalField) supported fields} will return
     
* appropriate range instances.
     
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
     
* <p>
     
* If the field is not a {@code ChronoField}, then the result of this method
     
* is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)}
     
* passing {@code this} as the argument.
     
* Whether the range can be obtained is determined by the field.
     
*
     
* @param field
  
the field to query the range for, not null
     
* @return the range of valid values for the field, not null
     
* @throws DateTimeException if the range for the field cannot be obtained
     
* @throws UnsupportedTemporalTypeException if the field is not supported
     
*/

    
@Override
    
public ValueRange range(TemporalField field) {
        
if (field instanceof ChronoField) {
            
if (field == INSTANT_SECONDS || field == OFFSET_SECONDS) {
                
return field.range();
            
}
            
return dateTime.range(field);
        
}
        
return field.rangeRefinedBy(this);
    
}

    
/**
     
* Gets the value of the specified field from this date-time as an {@code int}.
     
* <p>
     
* This queries this date-time for the value of the specified field.
     
* The returned value will always be within the valid range of values for the field.
     
* If it is not possible to return the value, because the field is not supported
     
* or for some other reason, an exception is thrown.
     
* <p>
     
* If the field is a {@link ChronoField} then the query is implemented here.
     
* The {@link #isSupported(TemporalField) supported fields} will return valid
     
* values based on this date-time, except {@code NANO_OF_DAY}, {@code MICRO_OF_DAY},
     
* {@code EPOCH_DAY}, {@code PROLEPTIC_MONTH} and {@code INSTANT_SECONDS} which are too
     
* large to fit in an {@code int} and throw a {@code DateTimeException}.
     
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
     
* <p>
     
* If the field is not a {@code ChronoField}, then the result of this method
     
* is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
     
* passing {@code this} as the argument. Whether the value can be obtained,
     
* and what the value represents, is determined by the field.
     
*
     
* @param field
  
the field to get, not null
     
* @return the value for the field
     
* @throws DateTimeException if a value for the field cannot be obtained or
     
*
         
the value is outside the range of valid values for the field
     
* @throws UnsupportedTemporalTypeException if the field is not supported or
     
*
         
the range of values exceeds an {@code int}
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
  
// override for Javadoc and performance
    
public int get(TemporalField field) {
        
if (field instanceof ChronoField) {
            
switch ((ChronoField) field) {
                
case INSTANT_SECONDS:
                    
throw new UnsupportedTemporalTypeException("Invalid field 'InstantSeconds' for get() method, use getLong() instead");
                
case OFFSET_SECONDS:
                    
return getOffset().getTotalSeconds();
            
}
            
return dateTime.get(field);
        
}
        
return ChronoZonedDateTime.super.get(field);
    
}

    
/**
     
* Gets the value of the specified field from this date-time as a {@code long}.
     
* <p>
     
* This queries this date-time for the value of the specified field.
     
* If it is not possible to return the value, because the field is not supported
     
* or for some other reason, an exception is thrown.
     
* <p>
     
* If the field is a {@link ChronoField} then the query is implemented here.
     
* The {@link #isSupported(TemporalField) supported fields} will return valid
     
* values based on this date-time.
     
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
     
* <p>
     
* If the field is not a {@code ChronoField}, then the result of this method
     
* is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
     
* passing {@code this} as the argument. Whether the value can be obtained,
     
* and what the value represents, is determined by the field.
     
*
     
* @param field
  
the field to get, not null
     
* @return the value for the field
     
* @throws DateTimeException if a value for the field cannot be obtained
     
* @throws UnsupportedTemporalTypeException if the field is not supported
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
    
public long getLong(TemporalField field) {
        
if (field instanceof ChronoField) {
            
switch ((ChronoField) field) {
                
case INSTANT_SECONDS: return toEpochSecond();
                
case OFFSET_SECONDS: return getOffset().getTotalSeconds();
            
}
            
return dateTime.getLong(field);
        
}
        
return field.getFrom(this);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Gets the zone offset, such as '+01:00'.
     
* <p>
     
* This is the offset of the local date-time from UTC/Greenwich.
     
*
     
* @return the zone offset, not null
     
*/

    
@Override
    
public ZoneOffset getOffset() {
        
return offset;
    
}

    
/**
     
* Returns a copy of this date-time changing the zone offset to the
     
* earlier of the two valid offsets at a local time-line overlap.
     
* <p>
     
* This method only has any effect when the local time-line overlaps, such as
     
* at an autumn daylight savings cutover. In this scenario, there are two
     
* valid offsets for the local date-time. Calling this method will return
     
* a zoned date-time with the earlier of the two selected.
     
* <p>
     
* If this method is called when it is not an overlap, {@code this}
     
* is returned.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @return a {@code ZonedDateTime} based on this date-time with the earlier offset, not null
     
*/

    
@Override
    
public ZonedDateTime withEarlierOffsetAtOverlap() {
        
ZoneOffsetTransition trans = getZone().getRules().getTransition(dateTime);
        
if (trans != null && trans.isOverlap()) {
            
ZoneOffset earlierOffset = trans.getOffsetBefore();
            
if (earlierOffset.equals(offset) == false) {
                
return new ZonedDateTime(dateTime, earlierOffset, zone);
            
}
        
}
        
return this;
    
}

    
/**
     
* Returns a copy of this date-time changing the zone offset to the
     
* later of the two valid offsets at a local time-line overlap.
     
* <p>
     
* This method only has any effect when the local time-line overlaps, such as
     
* at an autumn daylight savings cutover. In this scenario, there are two
     
* valid offsets for the local date-time. Calling this method will return
     
* a zoned date-time with the later of the two selected.
     
* <p>
     
* If this method is called when it is not an overlap, {@code this}
     
* is returned.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @return a {@code ZonedDateTime} based on this date-time with the later offset, not null
     
*/

    
@Override
    
public ZonedDateTime withLaterOffsetAtOverlap() {
        
ZoneOffsetTransition trans = getZone().getRules().getTransition(toLocalDateTime());
        
if (trans != null) {
            
ZoneOffset laterOffset = trans.getOffsetAfter();
            
if (laterOffset.equals(offset) == false) {
                
return new ZonedDateTime(dateTime, laterOffset, zone);
            
}
        
}
        
return this;
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Gets the time-zone, such as 'Europe/Paris'.
     
* <p>
     
* This returns the zone ID. This identifies the time-zone {@link ZoneRules rules}
     
* that determine when and how the offset from UTC/Greenwich changes.
     
* <p>
     
* The zone ID may be same as the {@linkplain #getOffset() offset}.
     
* If this is true, then any future calculations, such as addition or subtraction,
     
* have no complex edge cases due to time-zone rules.
     
* See also
 
.
     
*
     
* @return the time-zone, not null
     
*/

    
@Override
    
public ZoneId getZone() {
        
return zone;
    
}

    
/**
     
* Returns a copy of this date-time with a different time-zone,
     
* retaining the local date-time if possible.
     
* <p>
     
* This method changes the time-zone and retains the local date-time.
     
* The local date-time is only changed if it is invalid for the new zone,
     
* determined using the same approach as
     
* {@link #ofLocal(LocalDateTime, ZoneId, ZoneOffset)}.
     
* <p>
     
* To change the zone and adjust the local date-time,
     
* use {@link #withZoneSameInstant(ZoneId)}.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param zone
  
the time-zone to change to, not null
     
* @return a {@code ZonedDateTime} based on this date-time with the requested zone, not null
     
*/

    
@Override
    
public ZonedDateTime withZoneSameLocal(ZoneId zone) {
        
Objects.requireNonNull(zone, "zone");
        
return this.zone.equals(zone) ? this : ofLocal(dateTime, zone, offset);
    
}

    
/**
     
* Returns a copy of this date-time with a different time-zone,
     
* retaining the instant.
     
* <p>
     
* This method changes the time-zone and retains the instant.
     
* This normally results in a change to the local date-time.
     
* <p>
     
* This method is based on retaining the same instant, thus gaps and overlaps
     
* in the local time-line have no effect on the result.
     
* <p>
     
* To change the offset while keeping the local time,
     
* use {@link #withZoneSameLocal(ZoneId)}.
     
*
     
* @param zone
  
the time-zone to change to, not null
     
* @return a {@code ZonedDateTime} based on this date-time with the requested zone, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
@Override
    
public ZonedDateTime withZoneSameInstant(ZoneId zone) {
        
Objects.requireNonNull(zone, "zone");
        
return this.zone.equals(zone) ? this :
            
create(dateTime.toEpochSecond(offset), dateTime.getNano(), zone);
    
}

    
/**
     
* Returns a copy of this date-time with the zone ID set to the offset.
     
* <p>
     
* This returns a zoned date-time where the zone ID is the same as
 
.
     
* The local date-time, offset and instant of the result will be the same as in this date-time.
     
* <p>
     
* Setting the date-time to a fixed single offset means that any future
     
* calculations, such as addition or subtraction, have no complex edge cases
     
* due to time-zone rules.
     
* This might also be useful when sending a zoned date-time across a network,
     
* as most protocols, such as ISO-8601, only handle offsets,
     
* and not region-based zone IDs.
     
* <p>
     
* This is equivalent to {@code ZonedDateTime.of(zdt.toLocalDateTime(), zdt.getOffset())}.
     
*
     
* @return a {@code ZonedDateTime} with the zone ID set to the offset, not null
     
*/

    
public ZonedDateTime withFixedOffsetZone() {
        
return this.zone.equals(offset) ? this : new ZonedDateTime(dateTime, offset, offset);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Gets the {@code LocalDateTime} part of this date-time.
     
* <p>
     
* This returns a {@code LocalDateTime} with the same year, month, day and time
     
* as this date-time.
     
*
     
* @return the local date-time part of this date-time, not null
     
*/

    
@Override
  
// override for return type
    
public LocalDateTime toLocalDateTime() {
        
return dateTime;
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Gets the {@code LocalDate} part of this date-time.
     
* <p>
     
* This returns a {@code LocalDate} with the same year, month and day
     
* as this date-time.
     
*
     
* @return the date part of this date-time, not null
     
*/

    
@Override
  
// override for return type
    
public LocalDate toLocalDate() {
        
return dateTime.toLocalDate();
    
}

    
/**
     
* Gets the year field.
     
* <p>
     
* This method returns the primitive {@code int} value for the year.
     
* <p>
     
* The year returned by this method is proleptic as per {@code get(YEAR)}.
     
* To obtain the year-of-era, use {@code get(YEAR_OF_ERA)}.
     
*
     
* @return the year, from MIN_YEAR to MAX_YEAR
     
*/

    
public int getYear() {
        
return dateTime.getYear();
    
}

    
/**
     
* Gets the month-of-year field from 1 to 12.
     
* <p>
     
* This method returns the month as an {@code int} from 1 to 12.
     
* Application code is frequently clearer if the enum {@link Month}
     
* is used by calling
 
.
     
*
     
* @return the month-of-year, from 1 to 12
     
*
 

     
*/

    
public int getMonthValue() {
        
return dateTime.getMonthValue();
    
}

    
/**
     
* Gets the month-of-year field using the {@code Month} enum.
     
* <p>
     
* This method returns the enum {@link Month} for the month.
     
* This avoids confusion as to what {@code int} values mean.
     
* If you need access to the primitive {@code int} value then the enum
     
* provides the {@link Month#getValue() int value}.
     
*
     
* @return the month-of-year, not null
     
*
 

     
*/

    
public Month getMonth() {
        
return dateTime.getMonth();
    
}

    
/**
     
* Gets the day-of-month field.
     
* <p>
     
* This method returns the primitive {@code int} value for the day-of-month.
     
*
     
* @return the day-of-month, from 1 to 31
     
*/

    
public int getDayOfMonth() {
        
return dateTime.getDayOfMonth();
    
}

    
/**
     
* Gets the day-of-year field.
     
* <p>
     
* This method returns the primitive {@code int} value for the day-of-year.
     
*
     
* @return the day-of-year, from 1 to 365, or 366 in a leap year
     
*/

    
public int getDayOfYear() {
        
return dateTime.getDayOfYear();
    
}

    
/**
     
* Gets the day-of-week field, which is an enum {@code DayOfWeek}.
     
* <p>
     
* This method returns the enum {@link DayOfWeek} for the day-of-week.
     
* This avoids confusion as to what {@code int} values mean.
     
* If you need access to the primitive {@code int} value then the enum
     
* provides the {@link DayOfWeek#getValue() int value}.
     
* <p>
     
* Additional information can be obtained from the {@code DayOfWeek}.
     
* This includes textual names of the values.
     
*
     
* @return the day-of-week, not null
     
*/

    
public DayOfWeek getDayOfWeek() {
        
return dateTime.getDayOfWeek();
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Gets the {@code LocalTime} part of this date-time.
     
* <p>
     
* This returns a {@code LocalTime} with the same hour, minute, second and
     
* nanosecond as this date-time.
     
*
     
* @return the time part of this date-time, not null
     
*/

    
@Override
  
// override for Javadoc and performance
    
public LocalTime toLocalTime() {
        
return dateTime.toLocalTime();
    
}

    
/**
     
* Gets the hour-of-day field.
     
*
     
* @return the hour-of-day, from 0 to 23
     
*/
    
public int getHour() {
        
return dateTime.getHour();
    
}

    
/**
     
* Gets the minute-of-hour field.
     
*
     
* @return the minute-of-hour, from 0 to 59
     
*/
    
public int getMinute() {
        
return dateTime.getMinute();
    
}

    
/**
     
* Gets the second-of-minute field.
     
*
     
* @return the second-of-minute, from 0 to 59
     
*/
    
public int getSecond() {
        
return dateTime.getSecond();
    
}

    
/**
     
* Gets the nano-of-second field.
     
*
     
* @return the nano-of-second, from 0 to 999,999,999
     
*/

    
public int getNano() {
        
return dateTime.getNano();
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns an adjusted copy of this date-time.
     
* <p>
     
* This returns a {@code ZonedDateTime}, based on this one, with the date-time adjusted.
     
* The adjustment takes place using the specified adjuster strategy object.
     
* Read the documentation of the adjuster to understand what adjustment will be made.
     
* <p>
     
* A simple adjuster might simply set the one of the fields, such as the year field.
     
* A more complex adjuster might set the date to the last day of the month.
     
* A selection of common adjustments is provided in
     
* {@link java.time.temporal.TemporalAdjusters TemporalAdjusters}.
     
* These include finding the "last day of the month" and "next Wednesday".
     
* Key date-time classes also implement the {@code TemporalAdjuster} interface,
     
* such as {@link Month} and {@link java.time.MonthDay MonthDay}.
     
* The adjuster is responsible for handling special cases, such as the varying
     
* lengths of month and leap years.
     
* <p>
     
* For example this code returns a date on the last day of July:
     
* <pre>
     
*
  
import static java.time.Month.*;
     
*
  
import static java.time.temporal.TemporalAdjusters.*;
     
*
     
*
  
result = zonedDateTime.with(JULY).with(lastDayOfMonth());
     
* </pre>
     
* <p>
     
* The classes {@link LocalDate} and {@link LocalTime} implement {@code TemporalAdjuster},
     
* thus this method can be used to change the date, time or offset:
     
* <pre>
     
*
  
result = zonedDateTime.with(date);
     
*
  
result = zonedDateTime.with(time);
     
* </pre>
     
* <p>
     
* {@link ZoneOffset} also implements {@code TemporalAdjuster} however using it
     
* as an argument typically has no effect. The offset of a {@code ZonedDateTime} is
     
* controlled primarily by the time-zone. As such, changing the offset does not generally
     
* make sense, because there is only one valid offset for the local date-time and zone.
     
* If the zoned date-time is in a daylight savings overlap, then the offset is used
     
* to switch between the two valid offsets. In all other cases, the offset is ignored.
     
* <p>
     
* The result of this method is obtained by invoking the
     
* {@link TemporalAdjuster#adjustInto(Temporal)} method on the
     
* specified adjuster passing {@code this} as the argument.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param adjuster the adjuster to use, not null
     
* @return a {@code ZonedDateTime} based on {@code this} with the adjustment made, not null
     
* @throws DateTimeException if the adjustment cannot be made
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
    
public ZonedDateTime with(TemporalAdjuster adjuster) {
        
// optimizations
        
if (adjuster instanceof LocalDate) {
            
return resolveLocal(LocalDateTime.of((LocalDate) adjuster, dateTime.toLocalTime()));
        
} else if (adjuster instanceof LocalTime) {
            
return resolveLocal(LocalDateTime.of(dateTime.toLocalDate(), (LocalTime) adjuster));
        
} else if (adjuster instanceof LocalDateTime) {
            
return resolveLocal((LocalDateTime) adjuster);
        
} else if (adjuster instanceof OffsetDateTime) {
            
OffsetDateTime odt = (OffsetDateTime) adjuster;
            
return ofLocal(odt.toLocalDateTime(), zone, odt.getOffset());
        
} else if (adjuster instanceof Instant) {
            
Instant instant = (Instant) adjuster;
            
return create(instant.getEpochSecond(), instant.getNano(), zone);
        
} else if (adjuster instanceof ZoneOffset) {
            
return resolveOffset((ZoneOffset) adjuster);
        
}
        
return (ZonedDateTime) adjuster.adjustInto(this);
    
}

    
/**
     
* Returns a copy of this date-time with the specified field set to a new value.
     
* <p>
     
* This returns a {@code ZonedDateTime}, based on this one, with the value
     
* for the specified field changed.
     
* This can be used to change any supported field, such as the year, month or day-of-month.
     
* If it is not possible to set the value, because the field is not supported or for
     
* some other reason, an exception is thrown.
     
* <p>
     
* In some cases, changing the specified field can cause the resulting date-time to become invalid,
     
* such as changing the month from 31st January to February would make the day-of-month invalid.
     
* In cases like this, the field is responsible for resolving the date. Typically it will choose
     
* the previous valid date, which would be the last valid day of February in this example.
     
* <p>
     
* If the field is a {@link ChronoField} then the adjustment is implemented here.
     
* <p>
     
* The {@code INSTANT_SECONDS} field will return a date-time with the specified instant.
     
* The zone and nano-of-second are unchanged.
     
* The result will have an offset derived from the new instant and original zone.
     
* If the new instant value is outside the valid range then a {@code DateTimeException} will be thrown.
     
* <p>
     
* The {@code OFFSET_SECONDS} field will typically be ignored.
     
* The offset of a {@code ZonedDateTime} is controlled primarily by the time-zone.
     
* As such, changing the offset does not generally make sense, because there is only
     
* one valid offset for the local date-time and zone.
     
* If the zoned date-time is in a daylight savings overlap, then the offset is used
     
* to switch between the two valid offsets. In all other cases, the offset is ignored.
     
* If the new offset value is outside the valid range then a {@code DateTimeException} will be thrown.
     
* <p>
     
* The other {@link #isSupported(TemporalField) supported fields} will behave as per
     
* the matching method on {@link LocalDateTime#with(TemporalField, long) LocalDateTime}.
     
* The zone is not part of the calculation and will be unchanged.
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
     
* <p>
     
* If the field is not a {@code ChronoField}, then the result of this method
     
* is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)}
     
* passing {@code this} as the argument. In this case, the field determines
     
* whether and how to adjust the instant.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param field
  
the field to set in the result, not null
     
* @param newValue
  
the new value of the field in the result
     
* @return a {@code ZonedDateTime} based on {@code this} with the specified field set, not null
     
* @throws DateTimeException if the field cannot be set
     
* @throws UnsupportedTemporalTypeException if the field is not supported
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
    
public ZonedDateTime with(TemporalField field, long newValue) {
        
if (field instanceof ChronoField) {
            
ChronoField f = (ChronoField) field;
            
switch (f) {
                
case INSTANT_SECONDS:
                    
return create(newValue, getNano(), zone);
                
case OFFSET_SECONDS:
                    
ZoneOffset offset = ZoneOffset.ofTotalSeconds(f.checkValidIntValue(newValue));
                    
return resolveOffset(offset);
            
}
            
return resolveLocal(dateTime.with(field, newValue));
        
}
        
return field.adjustInto(this, newValue);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the year altered.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#withYear(int) changing the year} of the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param year
  
the year to set in the result, from MIN_YEAR to MAX_YEAR
     
* @return a {@code ZonedDateTime} based on this date-time with the requested year, not null
     
* @throws DateTimeException if the year value is invalid
     
*/

    
public ZonedDateTime withYear(int year) {
        
return resolveLocal(dateTime.withYear(year));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the month-of-year altered.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#withMonth(int) changing the month} of the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param month
  
the month-of-year to set in the result, from 1 (January) to 12 (December)
     
* @return a {@code ZonedDateTime} based on this date-time with the requested month, not null
     
* @throws DateTimeException if the month-of-year value is invalid
     
*/

    
public ZonedDateTime withMonth(int month) {
        
return resolveLocal(dateTime.withMonth(month));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the day-of-month altered.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#withDayOfMonth(int) changing the day-of-month} of the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param dayOfMonth
  
the day-of-month to set in the result, from 1 to 28-31
     
* @return a {@code ZonedDateTime} based on this date-time with the requested day, not null
     
* @throws DateTimeException if the day-of-month value is invalid,
     
*
  
or if the day-of-month is invalid for the month-year
     
*/

    
public ZonedDateTime withDayOfMonth(int dayOfMonth) {
        
return resolveLocal(dateTime.withDayOfMonth(dayOfMonth));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the day-of-year altered.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#withDayOfYear(int) changing the day-of-year} of the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param dayOfYear
  
the day-of-year to set in the result, from 1 to 365-366
     
* @return a {@code ZonedDateTime} based on this date with the requested day, not null
     
* @throws DateTimeException if the day-of-year value is invalid,
     
*
  
or if the day-of-year is invalid for the year
     
*/

    
public ZonedDateTime withDayOfYear(int dayOfYear) {
        
return resolveLocal(dateTime.withDayOfYear(dayOfYear));
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the hour-of-day altered.
     
* <p>
     
* This operates on the local time-line,
     
* {@linkplain LocalDateTime#withHour(int) changing the time} of the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param hour
  
the hour-of-day to set in the result, from 0 to 23
     
* @return a {@code ZonedDateTime} based on this date-time with the requested hour, not null
     
* @throws DateTimeException if the hour value is invalid
     
*/

    
public ZonedDateTime withHour(int hour) {
        
return resolveLocal(dateTime.withHour(hour));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the minute-of-hour altered.
     
* <p>
     
* This operates on the local time-line,
     
* {@linkplain LocalDateTime#withMinute(int) changing the time} of the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param minute
  
the minute-of-hour to set in the result, from 0 to 59
     
* @return a {@code ZonedDateTime} based on this date-time with the requested minute, not null
     
* @throws DateTimeException if the minute value is invalid
     
*/

    
public ZonedDateTime withMinute(int minute) {
        
return resolveLocal(dateTime.withMinute(minute));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the second-of-minute altered.
     
* <p>
     
* This operates on the local time-line,
     
* {@linkplain LocalDateTime#withSecond(int) changing the time} of the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param second
  
the second-of-minute to set in the result, from 0 to 59
     
* @return a {@code ZonedDateTime} based on this date-time with the requested second, not null
     
* @throws DateTimeException if the second value is invalid
     
*/

    
public ZonedDateTime withSecond(int second) {
        
return resolveLocal(dateTime.withSecond(second));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the nano-of-second altered.
     
* <p>
     
* This operates on the local time-line,
     
* {@linkplain LocalDateTime#withNano(int) changing the time} of the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param nanoOfSecond
  
the nano-of-second to set in the result, from 0 to 999,999,999
     
* @return a {@code ZonedDateTime} based on this date-time with the requested nanosecond, not null
     
* @throws DateTimeException if the nano value is invalid
     
*/

    
public ZonedDateTime withNano(int nanoOfSecond) {
        
return resolveLocal(dateTime.withNano(nanoOfSecond));
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the time truncated.
     
* <p>
     
* Truncation returns a copy of the original date-time with fields
     
* smaller than the specified unit set to zero.
     
* For example, truncating with the {@link ChronoUnit#MINUTES minutes} unit
     
* will set the second-of-minute and nano-of-second field to zero.
     
* <p>
     
* The unit must have a {@linkplain TemporalUnit#getDuration() duration}
     
* that divides into the length of a standard day without remainder.
     
* This includes all supplied time units on {@link ChronoUnit} and
     
* {@link ChronoUnit#DAYS DAYS}. Other units throw an exception.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#truncatedTo(TemporalUnit) truncating}
     
* the underlying local date-time. This is then converted back to a
     
* {@code ZonedDateTime}, using the zone ID to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param unit
  
the unit to truncate to, not null
     
* @return a {@code ZonedDateTime} based on this date-time with the time truncated, not null
     
* @throws DateTimeException if unable to truncate
     
* @throws UnsupportedTemporalTypeException if the unit is not supported
     
*/

    
public ZonedDateTime truncatedTo(TemporalUnit unit) {
        
return resolveLocal(dateTime.truncatedTo(unit));
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this date-time with the specified amount added.
     
* <p>
     
* This returns a {@code ZonedDateTime}, based on this one, with the specified amount added.
     
* The amount is typically {@link Period} or {@link Duration} but may be
     
* any other type implementing the {@link TemporalAmount} interface.
     
* <p>
     
* The calculation is delegated to the amount object by calling
     
* {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free
     
* to implement the addition in any way it wishes, however it typically
     
* calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation
     
* of the amount implementation to determine if it can be successfully added.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param amountToAdd
  
the amount to add, not null
     
* @return a {@code ZonedDateTime} based on this date-time with the addition made, not null
     
* @throws DateTimeException if the addition cannot be made
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
    
public ZonedDateTime plus(TemporalAmount amountToAdd) {
        
if (amountToAdd instanceof Period) {
            
Period periodToAdd = (Period) amountToAdd;
            
return resolveLocal(dateTime.plus(periodToAdd));
        
}
        
Objects.requireNonNull(amountToAdd, "amountToAdd");
        
return (ZonedDateTime) amountToAdd.addTo(this);
    
}

    
/**
     
* Returns a copy of this date-time with the specified amount added.
     
* <p>
     
* This returns a {@code ZonedDateTime}, based on this one, with the amount
     
* in terms of the unit added. If it is not possible to add the amount, because the
     
* unit is not supported or for some other reason, an exception is thrown.
     
* <p>
     
* If the field is a {@link ChronoUnit} then the addition is implemented here.
     
* The zone is not part of the calculation and will be unchanged in the result.
     
* The calculation for date and time units differ.
     
* <p>
     
* Date units operate on the local time-line.
     
* The period is first added to the local date-time, then converted back
     
* to a zoned date-time using the zone ID.
     
* The conversion uses {@link #ofLocal(LocalDateTime, ZoneId, ZoneOffset)}
     
* with the offset before the addition.
     
* <p>
     
* Time units operate on the instant time-line.
     
* The period is first added to the local date-time, then converted back to
     
* a zoned date-time using the zone ID.
     
* The conversion uses {@link #ofInstant(LocalDateTime, ZoneOffset, ZoneId)}
     
* with the offset before the addition.
     
* <p>
     
* If the field is not a {@code ChronoUnit}, then the result of this method
     
* is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)}
     
* passing {@code this} as the argument. In this case, the unit determines
     
* whether and how to perform the addition.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param amountToAdd
  
the amount of the unit to add to the result, may be negative
     
* @param unit
  
the unit of the amount to add, not null
     
* @return a {@code ZonedDateTime} based on this date-time with the specified amount added, not null
     
* @throws DateTimeException if the addition cannot be made
     
* @throws UnsupportedTemporalTypeException if the unit is not supported
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
    
public ZonedDateTime plus(long amountToAdd, TemporalUnit unit) {
        
if (unit instanceof ChronoUnit) {
            
if (unit.isDateBased()) {
                
return resolveLocal(dateTime.plus(amountToAdd, unit));
            
} else {
                
return resolveInstant(dateTime.plus(amountToAdd, unit));
            
}
        
}
        
return unit.addTo(this, amountToAdd);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of years added.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#plusYears(long) adding years} to the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param years
  
the years to add, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the years added, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime plusYears(long years) {
        
return resolveLocal(dateTime.plusYears(years));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of months added.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#plusMonths(long) adding months} to the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param months
  
the months to add, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the months added, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime plusMonths(long months) {
        
return resolveLocal(dateTime.plusMonths(months));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of weeks added.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#plusWeeks(long) adding weeks} to the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param weeks
  
the weeks to add, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the weeks added, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime plusWeeks(long weeks) {
        
return resolveLocal(dateTime.plusWeeks(weeks));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of days added.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#plusDays(long) adding days} to the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param days
  
the days to add, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the days added, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime plusDays(long days) {
        
return resolveLocal(dateTime.plusDays(days));
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of hours added.
     
* <p>
     
* This operates on the instant time-line, such that adding one hour will
     
* always be a duration of one hour later.
     
* This may cause the local date-time to change by an amount other than one hour.
     
* Note that this is a different approach to that used by days, months and years,
     
* thus adding one day is not the same as adding 24 hours.
     
* <p>
     
* For example, consider a time-zone where the spring DST cutover means that the
     
* local times 01:00 to 01:59 occur twice changing from offset +02:00 to +01:00.
     
* <ul>
     
* <li>Adding one hour to 00:30+02:00 will result in 01:30+02:00
     
* <li>Adding one hour to 01:30+02:00 will result in 01:30+01:00
     
* <li>Adding one hour to 01:30+01:00 will result in 02:30+01:00
     
* <li>Adding three hours to 00:30+02:00 will result in 02:30+01:00
     
* </ul>
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param hours
  
the hours to add, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the hours added, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime plusHours(long hours) {
        
return resolveInstant(dateTime.plusHours(hours));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of minutes added.
     
* <p>
     
* This operates on the instant time-line, such that adding one minute will
     
* always be a duration of one minute later.
     
* This may cause the local date-time to change by an amount other than one minute.
     
* Note that this is a different approach to that used by days, months and years.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param minutes
  
the minutes to add, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the minutes added, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime plusMinutes(long minutes) {
        
return resolveInstant(dateTime.plusMinutes(minutes));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of seconds added.
     
* <p>
     
* This operates on the instant time-line, such that adding one second will
     
* always be a duration of one second later.
     
* This may cause the local date-time to change by an amount other than one second.
     
* Note that this is a different approach to that used by days, months and years.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param seconds
  
the seconds to add, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the seconds added, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime plusSeconds(long seconds) {
        
return resolveInstant(dateTime.plusSeconds(seconds));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of nanoseconds added.
     
* <p>
     
* This operates on the instant time-line, such that adding one nano will
     
* always be a duration of one nano later.
     
* This may cause the local date-time to change by an amount other than one nano.
     
* Note that this is a different approach to that used by days, months and years.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param nanos
  
the nanos to add, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the nanoseconds added, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime plusNanos(long nanos) {
        
return resolveInstant(dateTime.plusNanos(nanos));
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this date-time with the specified amount subtracted.
     
* <p>
     
* This returns a {@code ZonedDateTime}, based on this one, with the specified amount subtracted.
     
* The amount is typically {@link Period} or {@link Duration} but may be
     
* any other type implementing the {@link TemporalAmount} interface.
     
* <p>
     
* The calculation is delegated to the amount object by calling
     
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
     
* to implement the subtraction in any way it wishes, however it typically
     
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
     
* of the amount implementation to determine if it can be successfully subtracted.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param amountToSubtract
  
the amount to subtract, not null
     
* @return a {@code ZonedDateTime} based on this date-time with the subtraction made, not null
     
* @throws DateTimeException if the subtraction cannot be made
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
    
public ZonedDateTime minus(TemporalAmount amountToSubtract) {
        
if (amountToSubtract instanceof Period) {
            
Period periodToSubtract = (Period) amountToSubtract;
            
return resolveLocal(dateTime.minus(periodToSubtract));
        
}
        
Objects.requireNonNull(amountToSubtract, "amountToSubtract");
        
return (ZonedDateTime) amountToSubtract.subtractFrom(this);
    
}

    
/**
     
* Returns a copy of this date-time with the specified amount subtracted.
     
* <p>
     
* This returns a {@code ZonedDateTime}, based on this one, with the amount
     
* in terms of the unit subtracted. If it is not possible to subtract the amount,
     
* because the unit is not supported or for some other reason, an exception is thrown.
     
* <p>
     
* The calculation for date and time units differ.
     
* <p>
     
* Date units operate on the local time-line.
     
* The period is first subtracted from the local date-time, then converted back
     
* to a zoned date-time using the zone ID.
     
* The conversion uses {@link #ofLocal(LocalDateTime, ZoneId, ZoneOffset)}
     
* with the offset before the subtraction.
     
* <p>
     
* Time units operate on the instant time-line.
     
* The period is first subtracted from the local date-time, then converted back to
     
* a zoned date-time using the zone ID.
     
* The conversion uses {@link #ofInstant(LocalDateTime, ZoneOffset, ZoneId)}
     
* with the offset before the subtraction.
     
* <p>
     
* This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated.
     
* See that method for a full description of how addition, and thus subtraction, works.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param amountToSubtract
  
the amount of the unit to subtract from the result, may be negative
     
* @param unit
  
the unit of the amount to subtract, not null
     
* @return a {@code ZonedDateTime} based on this date-time with the specified amount subtracted, not null
     
* @throws DateTimeException if the subtraction cannot be made
     
* @throws UnsupportedTemporalTypeException if the unit is not supported
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
    
public ZonedDateTime minus(long amountToSubtract, TemporalUnit unit) {
        
return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of years subtracted.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#minusYears(long) subtracting years} to the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param years
  
the years to subtract, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the years subtracted, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime minusYears(long years) {
        
return (years == Long.MIN_VALUE ? plusYears(Long.MAX_VALUE).plusYears(1) : plusYears(-years));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of months subtracted.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#minusMonths(long) subtracting months} to the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param months
  
the months to subtract, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the months subtracted, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime minusMonths(long months) {
        
return (months == Long.MIN_VALUE ? plusMonths(Long.MAX_VALUE).plusMonths(1) : plusMonths(-months));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of weeks subtracted.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#minusWeeks(long) subtracting weeks} to the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param weeks
  
the weeks to subtract, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the weeks subtracted, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime minusWeeks(long weeks) {
        
return (weeks == Long.MIN_VALUE ? plusWeeks(Long.MAX_VALUE).plusWeeks(1) : plusWeeks(-weeks));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of days subtracted.
     
* <p>
     
* This operates on the local time-line,
     
* {@link LocalDateTime#minusDays(long) subtracting days} to the local date-time.
     
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
     
* to obtain the offset.
     
* <p>
     
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
     
* then the offset will be retained if possible, otherwise the earlier offset will be used.
     
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param days
  
the days to subtract, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the days subtracted, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime minusDays(long days) {
        
return (days == Long.MIN_VALUE ? plusDays(Long.MAX_VALUE).plusDays(1) : plusDays(-days));
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of hours subtracted.
     
* <p>
     
* This operates on the instant time-line, such that subtracting one hour will
     
* always be a duration of one hour earlier.
     
* This may cause the local date-time to change by an amount other than one hour.
     
* Note that this is a different approach to that used by days, months and years,
     
* thus subtracting one day is not the same as adding 24 hours.
     
* <p>
     
* For example, consider a time-zone where the spring DST cutover means that the
     
* local times 01:00 to 01:59 occur twice changing from offset +02:00 to +01:00.
     
* <ul>
     
* <li>Subtracting one hour from 02:30+01:00 will result in 01:30+02:00
     
* <li>Subtracting one hour from 01:30+01:00 will result in 01:30+02:00
     
* <li>Subtracting one hour from 01:30+02:00 will result in 00:30+01:00
     
* <li>Subtracting three hours from 02:30+01:00 will result in 00:30+02:00
     
* </ul>
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param hours
  
the hours to subtract, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the hours subtracted, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime minusHours(long hours) {
        
return (hours == Long.MIN_VALUE ? plusHours(Long.MAX_VALUE).plusHours(1) : plusHours(-hours));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of minutes subtracted.
     
* <p>
     
* This operates on the instant time-line, such that subtracting one minute will
     
* always be a duration of one minute earlier.
     
* This may cause the local date-time to change by an amount other than one minute.
     
* Note that this is a different approach to that used by days, months and years.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param minutes
  
the minutes to subtract, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the minutes subtracted, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime minusMinutes(long minutes) {
        
return (minutes == Long.MIN_VALUE ? plusMinutes(Long.MAX_VALUE).plusMinutes(1) : plusMinutes(-minutes));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of seconds subtracted.
     
* <p>
     
* This operates on the instant time-line, such that subtracting one second will
     
* always be a duration of one second earlier.
     
* This may cause the local date-time to change by an amount other than one second.
     
* Note that this is a different approach to that used by days, months and years.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param seconds
  
the seconds to subtract, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the seconds subtracted, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime minusSeconds(long seconds) {
        
return (seconds == Long.MIN_VALUE ? plusSeconds(Long.MAX_VALUE).plusSeconds(1) : plusSeconds(-seconds));
    
}

    
/**
     
* Returns a copy of this {@code ZonedDateTime} with the specified number of nanoseconds subtracted.
     
* <p>
     
* This operates on the instant time-line, such that subtracting one nano will
     
* always be a duration of one nano earlier.
     
* This may cause the local date-time to change by an amount other than one nano.
     
* Note that this is a different approach to that used by days, months and years.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param nanos
  
the nanos to subtract, may be negative
     
* @return a {@code ZonedDateTime} based on this date-time with the nanoseconds subtracted, not null
     
* @throws DateTimeException if the result exceeds the supported date range
     
*/

    
public ZonedDateTime minusNanos(long nanos) {
        
return (nanos == Long.MIN_VALUE ? plusNanos(Long.MAX_VALUE).plusNanos(1) : plusNanos(-nanos));
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Queries this date-time using the specified query.
     
* <p>
     
* This queries this date-time using the specified query strategy object.
     
* The {@code TemporalQuery} object defines the logic to be used to
     
* obtain the result. Read the documentation of the query to understand
     
* what the result of this method will be.
     
* <p>
     
* The result of this method is obtained by invoking the
     
* {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
     
* specified query passing {@code this} as the argument.
     
*
     
* @param <R> the type of the result
     
* @param query
  
the query to invoke, not null
     
* @return the query result, null may be returned (defined by the query)
     
* @throws DateTimeException if unable to query (defined by the query)
     
* @throws ArithmeticException if numeric overflow occurs (defined by the query)
     
*/

    
@SuppressWarnings("unchecked")
    
@Override
  
// override for Javadoc
    
public <R> R query(TemporalQuery<R> query) {
        
if (query == TemporalQueries.localDate()) {
            
return (R) toLocalDate();
        
}
        
return ChronoZonedDateTime.super.query(query);
    
}

    
/**
     
* Calculates the amount of time until another date-time in terms of the specified unit.
     
* <p>
     
* This calculates the amount of time between two {@code ZonedDateTime}
     
* objects in terms of a single {@code TemporalUnit}.
     
* The start and end points are {@code this} and the specified date-time.
     
* The result will be negative if the end is before the start.
     
* For example, the amount in days between two date-times can be calculated
     
* using {@code startDateTime.until(endDateTime, DAYS)}.
     
* <p>
     
* The {@code Temporal} passed to this method is converted to a
     
* {@code ZonedDateTime} using {@link #from(TemporalAccessor)}.
     
* If the time-zone differs between the two zoned date-times, the specified
     
* end date-time is normalized to have the same zone as this date-time.
     
* <p>
     
* The calculation returns a whole number, representing the number of
     
* complete units between the two date-times.
     
* For example, the amount in months between 2012-06-15T00:00Z and 2012-08-14T23:59Z
     
* will only be one month as it is one minute short of two months.
     
* <p>
     
* There are two equivalent ways of using this method.
     
* The first is to invoke this method.
     
* The second is to use {@link TemporalUnit#between(Temporal, Temporal)}:
     
* <pre>
     
*
   
// these two lines are equivalent
     
*
   
amount = start.until(end, MONTHS);
     
*
   
amount = MONTHS.between(start, end);
     
* </pre>
     
* The choice should be made based on which makes the code more readable.
     
* <p>
     
* The calculation is implemented in this method for {@link ChronoUnit}.
     
* The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS},
     
* {@code MINUTES}, {@code HOURS} and {@code HALF_DAYS}, {@code DAYS},
     
* {@code WEEKS}, {@code MONTHS}, {@code YEARS}, {@code DECADES},
     
* {@code CENTURIES}, {@code MILLENNIA} and {@code ERAS} are supported.
     
* Other {@code ChronoUnit} values will throw an exception.
     
* <p>
     
* The calculation for date and time units differ.
     
* <p>
     
* Date units operate on the local time-line, using the local date-time.
     
* For example, the period from noon on day 1 to noon the following day
     
* in days will always be counted as exactly one day, irrespective of whether
     
* there was a daylight savings change or not.
     
* <p>
     
* Time units operate on the instant time-line.
     
* The calculation effectively converts both zoned date-times to instants
     
* and then calculates the period between the instants.
     
* For example, the period from noon on day 1 to noon the following day
     
* in hours may be 23, 24 or 25 hours (or some other amount) depending on
     
* whether there was a daylight savings change or not.
     
* <p>
     
* If the unit is not a {@code ChronoUnit}, then the result of this method
     
* is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)}
     
* passing {@code this} as the first argument and the converted input temporal
     
* as the second argument.
     
* <p>
     
* This instance is immutable and unaffected by this method call.
     
*
     
* @param endExclusive
  
the end date, exclusive, which is converted to a {@code ZonedDateTime}, not null
     
* @param unit
  
the unit to measure the amount in, not null
     
* @return the amount of time between this date-time and the end date-time
     
* @throws DateTimeException if the amount cannot be calculated, or the end
     
*
  
temporal cannot be converted to a {@code ZonedDateTime}
     
* @throws UnsupportedTemporalTypeException if the unit is not supported
     
* @throws ArithmeticException if numeric overflow occurs
     
*/

    
@Override
    
public long until(Temporal endExclusive, TemporalUnit unit) {
        
ZonedDateTime end = ZonedDateTime.from(endExclusive);
        
if (unit instanceof ChronoUnit) {
            
end = end.withZoneSameInstant(zone);
            
if (unit.isDateBased()) {
                
return dateTime.until(end.dateTime, unit);
            
} else {
                
return toOffsetDateTime().until(end.toOffsetDateTime(), unit);
            
}
        
}
        
return unit.between(this, end);
    
}

    
/**
     
* Formats this date-time using the specified formatter.
     
* <p>
     
* This date-time will be passed to the formatter to produce a string.
     
*
     
* @param formatter
  
the formatter to use, not null
     
* @return the formatted date-time string, not null
     
* @throws DateTimeException if an error occurs during printing
     
*/

    
@Override
  
// override for Javadoc and performance
    
public String format(DateTimeFormatter formatter) {
        
Objects.requireNonNull(formatter, "formatter");
        
return formatter.format(this);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Converts this date-time to an {@code OffsetDateTime}.
     
* <p>
     
* This creates an offset date-time using the local date-time and offset.
     
* The zone ID is ignored.
     
*
     
* @return an offset date-time representing the same local date-time and offset, not null
     
*/

    
public OffsetDateTime toOffsetDateTime() {
        
return OffsetDateTime.of(dateTime, offset);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Checks if this date-time is equal to another date-time.
     
* <p>
     
* The comparison is based on the offset date-time and the zone.
     
* Only objects of type {@code ZonedDateTime} are compared, other types return false.
     
*
     
* @param obj
  
the object to check, null returns false
     
* @return true if this is equal to the other date-time
     
*/

    
@Override
    
public boolean equals(Object obj) {
        
if (this == obj) {
            
return true;
        
}
        
if (obj instanceof ZonedDateTime) {
            
ZonedDateTime other = (ZonedDateTime) obj;
            
return dateTime.equals(other.dateTime) &&
                
offset.equals(other.offset) &&
                
zone.equals(other.zone);
        
}
        
return false;
    
}

    
/**
     
* A hash code for this date-time.
     
*
     
* @return a suitable hash code
     
*/
    
@Override
    
public int hashCode() {
        
return dateTime.hashCode() ^ offset.hashCode() ^ Integer.rotateLeft(zone.hashCode(), 3);
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Outputs this date-time as a {@code String}, such as
     
* {@code 2007-12-03T10:15:30+01:00[Europe/Paris]}.
     
* <p>
     
* The format consists of the {@code LocalDateTime} followed by the {@code ZoneOffset}.
     
* If the {@code ZoneId} is not the same as the offset, then the ID is output.
     
* The output is compatible with ISO-8601 if the offset and ID are the same.
     
*
     
* @return a string representation of this date-time, not null
     
*/

    
@Override
  
// override for Javadoc
    
public String toString() {
        
String str = dateTime.toString() + offset.toString();
        
if (offset != zone) {
            
str += '[' + zone.toString() + ']';
        
}
        
return str;
    
}

    
//-----------------------------------------------------------------------
    
/**
     
* Writes the object using a
     
*
 
<a href="../../serialized-form.html#java.time.Ser">dedicated serialized form</a>.
     
* @serialData
     
* <pre>
     
*
  
out.writeByte(6);// identifies a ZonedDateTime
     
*
  
// the
 
<a href="../../serialized-form.html#java.time.LocalDateTime">dateTime</a>
 
excluding the one byte header
     
*
  
// the
 
<a href="../../serialized-form.html#java.time.ZoneOffset">offset</a>
 
excluding the one byte header
     
*
  
// the
 
<a href="../../serialized-form.html#java.time.ZoneId">zone ID</a>
 
excluding the one byte header
     
* </pre>
     
*
     
* @return the instance of {@code Ser}, not null
     
*/

    
private Object writeReplace() {
        
return new Ser(Ser.ZONE_DATE_TIME_TYPE, this);
    
}

    
/**
     
* Defend against malicious streams.
     
*
     
* @param s the stream to read
     
* @throws InvalidObjectException always
     
*/

    
private void readObject(ObjectInputStream s) throws InvalidObjectException {
        
throw new InvalidObjectException("Deserialization via serialization delegate");
    
}

    
void writeExternal(DataOutput out) throws IOException {
        
dateTime.writeExternal(out);
        
offset.writeExternal(out);
        
zone.write(out);
    
}

    
static ZonedDateTime readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
        
LocalDateTime dateTime = LocalDateTime.readExternal(in);
        
ZoneOffset offset = ZoneOffset.readExternal(in);
        
ZoneId zone = (ZoneId) Ser.read(in);
        
return ZonedDateTime.ofLenient(dateTime, offset, zone);
    
}

}